38.2 Model Comparison
fit <- lm(metascore ~ log(budget), data = movies)
fit_b <- lm(metascore ~ log(budget) + log(us_gross), data = movies)
fit_c <- lm(metascore ~ log(budget) + log(us_gross) + runtime, data = movies)
coef_names <- c("Budget" = "log(budget)", "US Gross" = "log(us_gross)",
"Runtime (Hours)" = "runtime", "Constant" = "(Intercept)")
export_summs(fit, fit_b, fit_c, robust = "HC3", coefs = coef_names)
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
Budget | -2.43 *** | -5.16 *** | -6.70 *** |
(0.44) | (0.62) | (0.67) | |
US Gross | 3.96 *** | 3.85 *** | |
(0.51) | (0.48) | ||
Runtime (Hours) | 14.29 *** | ||
(1.63) | |||
Constant | 105.29 *** | 81.84 *** | 83.35 *** |
(7.65) | (8.66) | (8.82) | |
N | 831 | 831 | 831 |
R2 | 0.03 | 0.09 | 0.17 |
Standard errors are heteroskedasticity robust. *** p < 0.001; ** p < 0.01; * p < 0.05. |
Another package is modelsummary
library(modelsummary)
lm_mod <- lm(mpg ~ wt + hp + cyl, mtcars)
msummary(lm_mod, vcov = c("iid","robust","HC4"))
(1) | (2) | (3) | |
---|---|---|---|
(Intercept) | 38.752 | 38.752 | 38.752 |
(1.787) | (2.286) | (2.177) | |
wt | −3.167 | −3.167 | −3.167 |
(0.741) | (0.833) | (0.819) | |
hp | −0.018 | −0.018 | −0.018 |
(0.012) | (0.010) | (0.013) | |
cyl | −0.942 | −0.942 | −0.942 |
(0.551) | (0.573) | (0.572) | |
Num.Obs. | 32 | 32 | 32 |
R2 | 0.843 | 0.843 | 0.843 |
R2 Adj. | 0.826 | 0.826 | 0.826 |
AIC | 155.5 | 155.5 | 155.5 |
BIC | 162.8 | 162.8 | 162.8 |
Log.Lik. | −72.738 | −72.738 | −72.738 |
F | 50.171 | 31.065 | 32.623 |
RMSE | 2.35 | 2.35 | 2.35 |
Std.Errors | IID | HC3 | HC4 |
Another package is stargazer
library("stargazer")
stargazer(attitude)
#>
#> % Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com
#> % Date and time: Thu, Aug 29, 2024 - 4:10:22 PM
#> \begin{table}[!htbp] \centering
#> \caption{}
#> \label{}
#> \begin{tabular}{@{\extracolsep{5pt}}lccccc}
#> \\[-1.8ex]\hline
#> \hline \\[-1.8ex]
#> Statistic & \multicolumn{1}{c}{N} & \multicolumn{1}{c}{Mean} & \multicolumn{1}{c}{St. Dev.} & \multicolumn{1}{c}{Min} & \multicolumn{1}{c}{Max} \\
#> \hline \\[-1.8ex]
#> rating & 30 & 64.633 & 12.173 & 40 & 85 \\
#> complaints & 30 & 66.600 & 13.315 & 37 & 90 \\
#> privileges & 30 & 53.133 & 12.235 & 30 & 83 \\
#> learning & 30 & 56.367 & 11.737 & 34 & 75 \\
#> raises & 30 & 64.633 & 10.397 & 43 & 88 \\
#> critical & 30 & 74.767 & 9.895 & 49 & 92 \\
#> advance & 30 & 42.933 & 10.289 & 25 & 72 \\
#> \hline \\[-1.8ex]
#> \end{tabular}
#> \end{table}
## 2 OLS models
linear.1 <-
lm(rating ~ complaints + privileges + learning + raises + critical,
data = attitude)
linear.2 <-
lm(rating ~ complaints + privileges + learning, data = attitude)
## create an indicator dependent variable, and run a probit model
attitude$high.rating <- (attitude$rating > 70)
probit.model <-
glm(
high.rating ~ learning + critical + advance,
data = attitude,
family = binomial(link = "probit")
)
stargazer(linear.1,
linear.2,
probit.model,
title = "Results",
align = TRUE)
#>
#> % Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com
#> % Date and time: Thu, Aug 29, 2024 - 4:10:22 PM
#> % Requires LaTeX packages: dcolumn
#> \begin{table}[!htbp] \centering
#> \caption{Results}
#> \label{}
#> \begin{tabular}{@{\extracolsep{5pt}}lD{.}{.}{-3} D{.}{.}{-3} D{.}{.}{-3} }
#> \\[-1.8ex]\hline
#> \hline \\[-1.8ex]
#> & \multicolumn{3}{c}{\textit{Dependent variable:}} \\
#> \cline{2-4}
#> \\[-1.8ex] & \multicolumn{2}{c}{rating} & \multicolumn{1}{c}{high.rating} \\
#> \\[-1.8ex] & \multicolumn{2}{c}{\textit{OLS}} & \multicolumn{1}{c}{\textit{probit}} \\
#> \\[-1.8ex] & \multicolumn{1}{c}{(1)} & \multicolumn{1}{c}{(2)} & \multicolumn{1}{c}{(3)}\\
#> \hline \\[-1.8ex]
#> complaints & 0.692^{***} & 0.682^{***} & \\
#> & (0.149) & (0.129) & \\
#> & & & \\
#> privileges & -0.104 & -0.103 & \\
#> & (0.135) & (0.129) & \\
#> & & & \\
#> learning & 0.249 & 0.238^{*} & 0.164^{***} \\
#> & (0.160) & (0.139) & (0.053) \\
#> & & & \\
#> raises & -0.033 & & \\
#> & (0.202) & & \\
#> & & & \\
#> critical & 0.015 & & -0.001 \\
#> & (0.147) & & (0.044) \\
#> & & & \\
#> advance & & & -0.062 \\
#> & & & (0.042) \\
#> & & & \\
#> Constant & 11.011 & 11.258 & -7.476^{**} \\
#> & (11.704) & (7.318) & (3.570) \\
#> & & & \\
#> \hline \\[-1.8ex]
#> Observations & \multicolumn{1}{c}{30} & \multicolumn{1}{c}{30} & \multicolumn{1}{c}{30} \\
#> R$^{2}$ & \multicolumn{1}{c}{0.715} & \multicolumn{1}{c}{0.715} & \\
#> Adjusted R$^{2}$ & \multicolumn{1}{c}{0.656} & \multicolumn{1}{c}{0.682} & \\
#> Log Likelihood & & & \multicolumn{1}{c}{-9.087} \\
#> Akaike Inf. Crit. & & & \multicolumn{1}{c}{26.175} \\
#> Residual Std. Error & \multicolumn{1}{c}{7.139 (df = 24)} & \multicolumn{1}{c}{6.863 (df = 26)} & \\
#> F Statistic & \multicolumn{1}{c}{12.063$^{***}$ (df = 5; 24)} & \multicolumn{1}{c}{21.743$^{***}$ (df = 3; 26)} & \\
#> \hline
#> \hline \\[-1.8ex]
#> \textit{Note:} & \multicolumn{3}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
#> \end{tabular}
#> \end{table}
# Latex
stargazer(
linear.1,
linear.2,
probit.model,
title = "Regression Results",
align = TRUE,
dep.var.labels = c("Overall Rating", "High Rating"),
covariate.labels = c(
"Handling of Complaints",
"No Special Privileges",
"Opportunity to Learn",
"Performance-Based Raises",
"Too Critical",
"Advancement"
),
omit.stat = c("LL", "ser", "f"),
no.space = TRUE
)
# ASCII text output
stargazer(
linear.1,
linear.2,
type = "text",
title = "Regression Results",
dep.var.labels = c("Overall Rating", "High Rating"),
covariate.labels = c(
"Handling of Complaints",
"No Special Privileges",
"Opportunity to Learn",
"Performance-Based Raises",
"Too Critical",
"Advancement"
),
omit.stat = c("LL", "ser", "f"),
ci = TRUE,
ci.level = 0.90,
single.row = TRUE
)
#>
#> Regression Results
#> ========================================================================
#> Dependent variable:
#> -----------------------------------------------
#> Overall Rating
#> (1) (2)
#> ------------------------------------------------------------------------
#> Handling of Complaints 0.692*** (0.447, 0.937) 0.682*** (0.470, 0.894)
#> No Special Privileges -0.104 (-0.325, 0.118) -0.103 (-0.316, 0.109)
#> Opportunity to Learn 0.249 (-0.013, 0.512) 0.238* (0.009, 0.467)
#> Performance-Based Raises -0.033 (-0.366, 0.299)
#> Too Critical 0.015 (-0.227, 0.258)
#> Advancement 11.011 (-8.240, 30.262) 11.258 (-0.779, 23.296)
#> ------------------------------------------------------------------------
#> Observations 30 30
#> R2 0.715 0.715
#> Adjusted R2 0.656 0.682
#> ========================================================================
#> Note: *p<0.1; **p<0.05; ***p<0.01
stargazer(
linear.1,
linear.2,
probit.model,
title = "Regression Results",
align = TRUE,
dep.var.labels = c("Overall Rating", "High Rating"),
covariate.labels = c(
"Handling of Complaints",
"No Special Privileges",
"Opportunity to Learn",
"Performance-Based Raises",
"Too Critical",
"Advancement"
),
omit.stat = c("LL", "ser", "f"),
no.space = TRUE
)
Correlation Table