B.2 Math Expression/ Syntax
Aligning equations
a=bX∼Norm(10,3)5≤10
Cross-reference equation
a=bto refer in a sentence (B.1) (\@ref(eq:test)
)
Math Syntax | Notation |
---|---|
$\pm$ |
± |
$\ge$ |
≥ |
$\le$ |
≤ |
$\neq$ |
≠ |
$\equiv$ |
≡ |
$^\circ$ |
∘ |
$\times$ |
× |
$\cdot$ |
⋅ |
$\leq$ |
≤ |
$\geq$ |
≥ |
\propto |
∝ |
$\subset$ |
⊂ |
$\subseteq$ |
⊆ |
$\leftarrow$ |
← |
$\rightarrow$ |
→ |
$\Leftarrow$ |
⇐ |
$\Rightarrow$ |
⇒ |
$\approx$ |
≈ |
$\mathbb{R}$ |
R |
$\sum_{n=1}^{10} n^2$ |
∑10n=1n2 |
$$\sum_{n=1}^{10} n^2$$ |
10∑n=1n2 |
$x^{n}$ |
xn |
$x_{n}$ |
xn |
$\overline{x}$ |
¯x |
$\hat{x}$ |
ˆx |
$\tilde{x}$ |
˜x |
\check{} |
ˇ |
\underset{\gamma}{\operatorname{argmin}} |
argminγ |
$\frac{a}{b}$ |
ab |
$\frac{a}{b}$ |
ab |
$\displaystyle \frac{a}{b}$ |
ab |
$\binom{n}{k}$ |
\binom{n}{k} |
$x_{1} + x_{2} + \cdots + x_{n}$ |
x_{1} + x_{2} + \cdots + x_{n} |
$x_{1}, x_{2}, \dots, x_{n}$ |
x_{1}, x_{2}, \dots, x_{n} |
\mathbf{x} = \langle x_{1}, x_{2}, \dots, x_{n}\rangle$ |
\mathbf{x} = \langle x_{1}, x_{2}, \dots, x_{n}\rangle |
$x \in A$ |
x \in A |
$|A|$ |
|A| |
$x \in A$ |
x \in A |
$x \subset B$ |
x \subset B |
$x \subseteq B$ |
x \subseteq B |
$A \cup B$ |
A \cup B |
$A \cap B$ |
A \cap B |
$X \sim Binom(n, \pi)$ |
X \sim Binom(n, \pi) |
$\mathrm{P}(X \le x) = \text{pbinom}(x, n, \pi)$ |
\mathrm{P}(X \le x) = \text{pbinom}(x, n, \pi) |
$P(A \mid B)$ |
P(A \mid B) |
$\mathrm{P}(A \mid B)$ |
\mathrm{P}(A \mid B) |
$\{1, 2, 3\}$ |
\{1, 2, 3\} |
$\sin(x)$ |
\sin(x) |
$\log(x)$ |
\log(x) |
$\int_{a}^{b}$ |
\int_{a}^{b} |
$\left(\int_{a}^{b} f(x) \; dx\right)$ |
\left(\int_{a}^{b} f(x) \; dx\right) |
$\left[\int_{\-infty}^{\infty} f(x) \; dx\right]$ |
\left[\int_{-\infty}^{\infty} f(x) \; dx\right] |
$\left. F(x) \right|_{a}^{b}$ |
\left. F(x) \right|_{a}^{b} |
$\sum_{x = a}^{b} f(x)$ |
\sum_{x = a}^{b} f(x) |
$\prod_{x = a}^{b} f(x)$ |
\prod_{x = a}^{b} f(x) |
$\lim_{x \to \infty} f(x)$ |
\lim_{x \to \infty} f(x) |
$\displaystyle \lim_{x \to \infty} f(x)$ |
\displaystyle \lim_{x \to \infty} f(x) |
Greek Letters | |
$\alpha A$ |
\alpha A |
$\beta B$ |
\beta B |
$\gamma \Gamma$ |
\gamma \Gamma |
$\delta \Delta$ |
\delta \Delta |
$\epsilon \varepsilon E$ |
\epsilon \varepsilon E |
$\zeta Z \sigma $ |
\zeta Z \sigma |
$\eta H$ |
\eta H |
$\theta \vartheta \Theta$ |
\theta \vartheta \Theta |
$\iota I$ |
\iota I |
$\kappa K$ |
\kappa K |
$\lambda \Lambda$ |
\lambda \Lambda |
$\mu M$ |
\mu M |
$\nu N$ |
\nu N |
$\xi\Xi$ |
\xi\Xi |
$o O$ |
o O |
$\pi \Pi$ |
\pi \Pi |
$\rho\varrho P$ |
\rho\varrho P |
$\sigma \Sigma$ |
\sigma \Sigma |
$\tau T$ |
\tau T |
$\upsilon \Upsilon$ |
\upsilon \Upsilon |
$\phi \varphi \Phi$ |
\phi \varphi \Phi |
$\chi X$ |
\chi X |
$\psi \Psi$ |
\psi \Psi |
$\omega \Omega$ |
\omega \Omega |
$\cdot$ |
\cdot |
$\cdots$ |
\cdots |
$\ddots$ |
\ddots |
$\ldots$ |
\ldots |
Limit P(\lim_{n\to \infty}\bar{X}_n =\mu) =1
P(\lim_{n\to \infty}\bar{X}_n =\mu) =1
Matrices
\begin{array} {rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}
\mathbf{X} = \left[\begin{array} {rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right]
Aligning Equations
Aligning Equations with Comments
\begin{aligned}
3+x &=4 && \text{(Solve for} x \text{.)}\\
x &=4-3 && \text{(Subtract 3 from both sides.)}\\
x &=1 && \text{(Yielding the solution.)}
\end{aligned}
\begin{aligned} 3+x &=4 & &\text{(Solve for} x \text{.)} \\ x &=4-3 && \text{(Subtract 3 from both sides.)} \\ x &=1 && \text{(Yielding the solution.)} \end{aligned}
B.2.1 Statistics Notation
$$
f(y|N,p) = \frac{N!}{y!(N-y)!}\cdot p^y \cdot (1-p)^{N-y} = {{N}\choose{y}} \cdot p^y \cdot (1-p)^{N-y}
$$
f(y|N,p) = \frac{N!}{y!(N-y)!}\cdot p^y \cdot (1-p)^{N-y} = {{N}\choose{y}} \cdot p^y \cdot (1-p)^{N-y}
\begin{cases} \frac{1}{b-a} & \text{for } x\in[a,b]\\ 0 & \text{otherwise}\\ \end{cases}