Chapter 47 Exploratory Data Analysis
Data Report
Feature Engineering
Missing Data
# install.packages("DataExplorer")
library(DataExplorer)
# creat a html file that contain all reports
create_report(txhousing)
introduce() # see basic info
dummify() # create binary columns from discrete variables
split_columns() # split data into discrete and continuous parts
plot_correlation() # heatmap for discrete var
plot_intro()
plot_missing() # plot missing value
profile_missing() # profile missing values
plot_prcomp() # plot PCA
Error Identification
# install.packages("dataReporter")
library(dataReporter)
makeDataReport() # detailed report like DataExplorer
Summary statistics
Not so code-y process
Quick and dirty way to look at your data
# install.packages("rpivotTable")
library(rpivotTable)
# give set up just like Excel table
data %>%
rpivotTable::rpivotTable()
Code generation and wrangling
Shiny-app based Tableu style
Customized your daily/automatic report