7.5 Negative Binomial Regression
library(MASS)
NegBinom_Mod <- MASS::glm.nb(Num_Article ~ .,bioChemists)
summary(NegBinom_Mod)
#>
#> Call:
#> MASS::glm.nb(formula = Num_Article ~ ., data = bioChemists, init.theta = 2.264387695,
#> link = log)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -2.1678 -1.3617 -0.2806 0.4476 3.4524
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.256144 0.137348 1.865 0.062191 .
#> SexWomen -0.216418 0.072636 -2.979 0.002887 **
#> MarriedMarried 0.150489 0.082097 1.833 0.066791 .
#> Num_Kid5 -0.176415 0.052813 -3.340 0.000837 ***
#> PhD_Quality 0.015271 0.035873 0.426 0.670326
#> Num_MentArticle 0.029082 0.003214 9.048 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for Negative Binomial(2.2644) family taken to be 1)
#>
#> Null deviance: 1109.0 on 914 degrees of freedom
#> Residual deviance: 1004.3 on 909 degrees of freedom
#> AIC: 3135.9
#>
#> Number of Fisher Scoring iterations: 1
#>
#>
#> Theta: 2.264
#> Std. Err.: 0.271
#>
#> 2 x log-likelihood: -3121.917
We can see the dispersion is 2.264 with SE = 0.271, which is significantly different from 1, indicating over-dispersion. Check Over-Dispersion for more detail