第 54 章 Tidy Statistics

一个事实是,用统计的,往往不是学统计的

对非统计专业的初学者(比如我)感觉 t-test, ANOVAs, Chi-Square test等太不友好了,每次用的时候,我都要去翻书看我用对了没有,还要担心p-value是否徘徊在0.05附近。或许,从t-test等统计检验方法开始学统计是个错误的开始。我有时候在想,我们是不是应该更关心模型的理解,或者模型背后的理论呢。(如果和我的想法一样,就跳过本章吧)

想归想,但同学们对这方面的需求很大,所以还是打算介绍基本的方差分析内容。

54.1 方法的区分

比较几组数据之间是否有显著性差异,最常用的方法有以下几种

X变量类型 X组别数量 Y变量类型 分析方法 R语法
定类 2组或者多组 定量 方差 aov()
定类 仅仅2组 定量 t检验 t.test()
定类 2组或者多组 定类 卡方 chisq.test()

根据X变量的个数,方差分析又分为单因素方差分析和多因素方差分析,当X的个数(不是组别数量)为1个时,我们称之为单因素方差;X的个数为2个时,则为双因素方差。

54.2 从一个案例开始

从这是一份1994年收集1379个对象关于收入、身高、教育水平等信息的数据集,数据在课件首页下载。

首先,我们下载后导入数据

library(tidyverse)
wages <- read_csv("./demo_data/wages.csv")

wages %>% 
  head() %>% 
  knitr::kable()
earn height sex race ed age
79571.30 73.89 male white 16 49
96396.99 66.23 female white 16 62
48710.67 63.77 female white 16 33
80478.10 63.22 female other 16 95
82089.35 63.08 female white 17 43
15313.35 64.53 female white 15 30

我们的问题:男性是否就比女性挣的多?

54.3 单因素方差分析

t.test(earn ~ sex, data = wages)
## 
##  Welch Two Sample t-test
## 
## data:  earn by sex
## t = -11.936, df = 768.12, p-value < 2.2e-16
## alternative hypothesis: true difference in means between group female and group male is not equal to 0
## 95 percent confidence interval:
##  -25324.21 -18170.74
## sample estimates:
## mean in group female   mean in group male 
##             24245.65             45993.13
lm(earn ~ sex, data = wages) %>% 
  summary()
## 
## Call:
## lm(formula = earn ~ sex, data = wages)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -46092 -20516  -4639  11722 271956 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    24246       1004   24.14   <2e-16 ***
## sexmale        21748       1636   13.30   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 29440 on 1377 degrees of freedom
## Multiple R-squared:  0.1138, Adjusted R-squared:  0.1131 
## F-statistic: 176.8 on 1 and 1377 DF,  p-value: < 2.2e-16
aov(earn ~ sex, data = wages) %>% 
  summary()
##               Df    Sum Sq   Mean Sq F value Pr(>F)    
## sex            1 1.532e+11 1.532e+11   176.8 <2e-16 ***
## Residuals   1377 1.193e+12 8.665e+08                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

54.4 双因素方差分析

我们采用ggpubr宏包下的ToothGrowth来说明,这个数据集包含60个样本,记录着每10只豚鼠在不同的喂食方法和不同的药物剂量下,牙齿的生长情况.

  • len : 牙齿长度
  • supp : 两种喂食方法 (橙汁和维生素C)
  • dose : 抗坏血酸剂量 (0.5, 1, and 2 mg)
library(ggpubr)

my_data <- ToothGrowth %>%
  mutate(
    across(c(supp, dose), ~ as_factor(.x))
  )

my_data %>% head()
##    len supp dose
## 1  4.2   VC  0.5
## 2 11.5   VC  0.5
## 3  7.3   VC  0.5
## 4  5.8   VC  0.5
## 5  6.4   VC  0.5
## 6 10.0   VC  0.5
my_data %>%
  ggplot(aes(x = supp, y = len, fill = supp)) +
  geom_boxplot(position = position_dodge()) +
  facet_wrap(vars(dose)) +
  labs(title = "Effects of VC dose and intake mode on teeth of guinea pigs")

问题:豚鼠牙齿的长度是否与药物的食用方法和剂量有关?

线性回归时,我们是通过独立变量来预测响应变量,但现在我们关注的重点会从预测转向不同组别差异之间的分析,这即为方差分析(ANOVA)。

这里是两个解释变量,所以问题需要双因素方差分析 (ANOVA)

aov(len ~ supp + dose, data = my_data) %>%
  broom::tidy()
## # A tibble: 3 × 6
##   term         df sumsq meansq statistic   p.value
##   <chr>     <dbl> <dbl>  <dbl>     <dbl>     <dbl>
## 1 supp          1  205.  205.       14.0  4.29e- 4
## 2 dose          2 2426. 1213.       82.8  1.87e-17
## 3 Residuals    56  820.   14.7      NA   NA

检验表明不同类型之间存在显著差异,但是并没有告诉我们具体谁与谁之间的不同。需要多重比较帮助我们解决这个问题。使用TurkeyHSD函数

aov(len ~ supp + dose, data = my_data) %>%
  TukeyHSD(which = "dose") %>%
  broom::tidy()
## # A tibble: 3 × 7
##   term  contrast null.value estimate conf.low conf.high adj.p.value
##   <chr> <chr>         <dbl>    <dbl>    <dbl>     <dbl>       <dbl>
## 1 dose  1-0.5             0     9.13     6.22     12.0     1.32e- 9
## 2 dose  2-0.5             0    15.5     12.6      18.4     7.31e-12
## 3 dose  2-1               0     6.37     3.45      9.28    6.98e- 6
aov(len ~ supp + dose, data = my_data) %>%
  TukeyHSD(which = "supp") %>%
  broom::tidy()
## # A tibble: 1 × 7
##   term  contrast null.value estimate conf.low conf.high adj.p.value
##   <chr> <chr>         <dbl>    <dbl>    <dbl>     <dbl>       <dbl>
## 1 supp  VC-OJ             0    -3.70    -5.68     -1.72    0.000429

思考:交互效应是否显著?

aov(len ~ supp * dose, data = my_data) %>%
  broom::tidy()
## # A tibble: 4 × 6
##   term         df sumsq meansq statistic   p.value
##   <chr>     <dbl> <dbl>  <dbl>     <dbl>     <dbl>
## 1 supp          1  205.  205.      15.6   2.31e- 4
## 2 dose          2 2426. 1213.      92.0   4.05e-18
## 3 supp:dose     2  108.   54.2      4.11  2.19e- 2
## 4 Residuals    54  712.   13.2     NA    NA

54.5 在tidyverse中的应用

我们也可以配合强大的tidyverse函数,完成不同分组下的方差分析,比如

mtcars %>%
  group_by(cyl) %>%
  summarise(
    broom::tidy(aov(mpg ~ gear, data = cur_data())),
    .groups = "keep"
  ) %>% 
  select(term, statistic, p.value) %>% 
  filter(term != "Residuals") %>% 
  arrange(p.value)
## # A tibble: 3 × 4
## # Groups:   cyl [3]
##     cyl term  statistic p.value
##   <dbl> <chr>     <dbl>   <dbl>
## 1     4 gear   1.17       0.308
## 2     8 gear   0.0297     0.866
## 3     6 gear   0.000451   0.984

更多使用可参考第 39 章。

54.6 使用rstatix包

rstatix包吸收了tidyverse的设计哲学, 让熟悉dplyr语法的用户能更方便的完成t-test, Wilcoxon test, ANOVA, Kruskal-Wallis等基础统计检验, 同时也增强了代码的可读性,在实际应用中还是挺受用户欢迎的,比如这本书。下面,就ToothGrowth数据,列举rstatix包的一些用法。

library(rstatix)

my_data %>% 
  group_by(dose) %>%
  t_test(len ~ 1, mu = 0)
## # A tibble: 3 × 8
##   dose  .y.   group1 group2         n statistic    df        p
## * <fct> <chr> <chr>  <chr>      <int>     <dbl> <dbl>    <dbl>
## 1 0.5   len   1      null model    20      10.5    19 2.24e- 9
## 2 1     len   1      null model    20      20.0    19 3.22e-14
## 3 2     len   1      null model    20      30.9    19 1.03e-17
# T-test
stat.test <- my_data %>% 
  t_test(len ~ supp, paired = FALSE) 

# Create a box plot
p <- ggboxplot(
  my_data, x = "supp", y = "len", 
  color = "supp", palette = "jco", ylim = c(0,40)
  )

# Add the p-value manually
p + 
  stat_pvalue_manual(stat.test, label = "p", y.position = 35) +
  stat_pvalue_manual(stat.test, label = "T-test, p = {p}", 
                     y.position = 36)
# One-way ANOVA test

my_data %>% 
  anova_test(len ~ dose)
## ANOVA Table (type II tests)
## 
##   Effect DFn DFd      F        p p<.05   ges
## 1   dose   2  57 67.416 9.53e-16     * 0.703
# Two-way ANOVA test

my_data %>% 
  anova_test(len ~ supp*dose)
## ANOVA Table (type II tests)
## 
##      Effect DFn DFd      F        p p<.05   ges
## 1      supp   1  54 15.572 2.31e-04     * 0.224
## 2      dose   2  54 92.000 4.05e-18     * 0.773
## 3 supp:dose   2  54  4.107 2.20e-02     * 0.132
# Two-way repeated measures ANOVA

my_data %>% 
  mutate(id = rep(1:10, 6) ) %>%  # Add individuals id
  anova_test(dv = len, wid = id, within = c(supp, dose))
## ANOVA Table (type III tests)
## 
## $ANOVA
##      Effect DFn DFd       F        p p<.05   ges
## 1      supp   1   9  34.866 2.28e-04     * 0.224
## 2      dose   2  18 106.470 1.06e-10     * 0.773
## 3 supp:dose   2  18   2.534 1.07e-01       0.132
## 
## $`Mauchly's Test for Sphericity`
##      Effect     W     p p<.05
## 1      dose 0.807 0.425      
## 2 supp:dose 0.934 0.761      
## 
## $`Sphericity Corrections`
##      Effect   GGe      DF[GG]    p[GG] p[GG]<.05   HFe      DF[HF]    p[HF]
## 1      dose 0.838 1.68, 15.09 2.79e-09         * 1.008 2.02, 18.15 1.06e-10
## 2 supp:dose 0.938 1.88, 16.88 1.12e-01           1.176 2.35, 21.17 1.07e-01
##   p[HF]<.05
## 1         *
## 2