第 81 章 探索性数据分析-anscombe数据集

在可视化章节,我们提到 Anscombe’s quartet这个数据集,

?datasets::anscombe

在其官方文档,我们可看到它是这样描述的:

Four x-y datasets which have the same traditional statistical properties (mean, variance, correlation, regression line, etc.), yet are quite different.

d <- datasets::anscombe
head(d)
##   x1 x2 x3 x4   y1   y2    y3   y4
## 1 10 10 10  8 8.04 9.14  7.46 6.58
## 2  8  8  8  8 6.95 8.14  6.77 5.76
## 3 13 13 13  8 7.58 8.74 12.74 7.71
## 4  9  9  9  8 8.81 8.77  7.11 8.84
## 5 11 11 11  8 8.33 9.26  7.81 8.47
## 6 14 14 14  8 9.96 8.10  8.84 7.04

81.1 探索anscombe

本节课的内容,就是用tidyverse的方法去探索下这个数据集:

  • 规整数据
  • 分组统计
  • 建模
  • 可视化

81.2 规整数据

我们再看看数据

head(d)
##   x1 x2 x3 x4   y1   y2    y3   y4
## 1 10 10 10  8 8.04 9.14  7.46 6.58
## 2  8  8  8  8 6.95 8.14  6.77 5.76
## 3 13 13 13  8 7.58 8.74 12.74 7.71
## 4  9  9  9  8 8.81 8.77  7.11 8.84
## 5 11 11 11  8 8.33 9.26  7.81 8.47
## 6 14 14 14  8 9.96 8.10  8.84 7.04

实际上,这是四组(x1, y1), (x2, y2), (x3, y3), (x4, y4)。那要怎么样规整数据, 或者说怎么样把数据弄成tidy呢。这里有个技巧,你可以想象,数据能ggplot()可视化的基本上就是tidy的。

d %>%
  ggplot(aes(x = x, y = y)) +
  geom_point() +
  facet_wrap(~set)

那么,我们希望我们的数据是这样的格式

set x y
1 10 8.04
1 8 6.95
2 10 9.14
2 8 8.14

81.2.1 小小的回顾

我们之前讲过,数据变形中,宽表格变成长表格, 需要用到tidyr::pivot_longer()函数

比如

dt <- tibble(id = c("a", "b"), x_1 = 1:2, x_2 = 3:4, y_1 = 5:6, y_2 = 8:9)
dt
## # A tibble: 2 × 5
##   id      x_1   x_2   y_1   y_2
##   <chr> <int> <int> <int> <int>
## 1 a         1     3     5     8
## 2 b         2     4     6     9
dt %>% pivot_longer(-id,
  names_to = "name",
  values_to = "vaules"
)
## # A tibble: 8 × 3
##   id    name  vaules
##   <chr> <chr>  <int>
## 1 a     x_1        1
## 2 a     x_2        3
## 3 a     y_1        5
## 4 a     y_2        8
## 5 b     x_1        2
## 6 b     x_2        4
## 7 b     y_1        6
## 8 b     y_2        9

有时候,我们不想要下划线后面的编号,只想保留前面的第一个字母

dt %>% pivot_longer(
  cols = -id,
  names_to = "name",
  names_pattern = "(.)_.",
  values_to = "vaules"
)
## # A tibble: 8 × 3
##   id    name  vaules
##   <chr> <chr>  <int>
## 1 a     x          1
## 2 a     x          3
## 3 a     y          5
## 4 a     y          8
## 5 b     x          2
## 6 b     x          4
## 7 b     y          6
## 8 b     y          9

有时候人的需求是多样的,比如不想要前面的第一个字母,只要下划线后面的编号

dt %>% pivot_longer(
  cols = -id,
  names_to = "name",
  names_pattern = "._(.)",
  values_to = "vaules"
)
## # A tibble: 8 × 3
##   id    name  vaules
##   <chr> <chr>  <int>
## 1 a     1          1
## 2 a     2          3
## 3 a     1          5
## 4 a     2          8
## 5 b     1          2
## 6 b     2          4
## 7 b     1          6
## 8 b     2          9

有时候我们都想要呢?

dt %>% pivot_longer(
  cols = -id,
  names_to = c("name", "group"),
  names_pattern = "(.)_(.)",
  values_to = "vaules"
)
## # A tibble: 8 × 4
##   id    name  group vaules
##   <chr> <chr> <chr>  <int>
## 1 a     x     1          1
## 2 a     x     2          3
## 3 a     y     1          5
## 4 a     y     2          8
## 5 b     x     1          2
## 6 b     x     2          4
## 7 b     y     1          6
## 8 b     y     2          9

有时候,我们希望"x", "y"保留在列名,那么匹配出来的第一个字母,就不能给"name",而是传给特殊的符号".value",它会收集匹配出来的字符,然后放在列名中

dt %>% pivot_longer(
  cols = -id,
  names_to = c(".value", "group"),
  names_pattern = "(.)_(.)",
  values_to = "vaules"
)
## # A tibble: 4 × 4
##   id    group     x     y
##   <chr> <chr> <int> <int>
## 1 a     1         1     5
## 2 a     2         3     8
## 3 b     1         2     6
## 4 b     2         4     9

是不是觉得很强大?

81.2.2 回到案例

具体来说,我们希望 x1 按照指定的正则表达式分成了两个部分 x1,那么1放在set下,而 x 传给了.value 当作变型后的列名.

knitr::include_graphics("images/pivot_longer_values.jpg")

那么和上面的情况一样,使用tidyr::pivot_longer()函数

tidy_d <- d %>%
  pivot_longer(
    cols = everything(),
    names_to = c(".value", "set"),
    names_pattern = "(.)(.)"
  )
tidy_d
## # A tibble: 44 × 3
##    set       x     y
##    <chr> <dbl> <dbl>
##  1 1        10  8.04
##  2 2        10  9.14
##  3 3        10  7.46
##  4 4         8  6.58
##  5 1         8  6.95
##  6 2         8  8.14
##  7 3         8  6.77
##  8 4         8  5.76
##  9 1        13  7.58
## 10 2        13  8.74
## # ℹ 34 more rows

再啰嗦下参数的含义:

  • cols = everything() 表示选择所有列
  • names_to = c(".value", "set") 希望变型后的列名是c(".value", "set"), 这里 ".value" 是个特殊的符号,代表着names_pattern匹配过来的值,一般情况下,是多个值,如果传给".value""x, y, z",那么列名就会变成c("x", "y", "z", "set")
  • names_pattern = "(.)(.)" 将变换前的列名按照指定的正则表达式匹配,并且传递给names_to的对应的参数,比如这里第一个(.)传递给.value;第二个(.)传递给set.

81.3 统计

数据规整了,统计就很简单了

tidy_d_summary <- tidy_d %>%
  group_by(set) %>%
  summarise(across(
    .cols = everything(),
    .fns = lst(mean, sd, var),
    .names = "{col}_{fn}"
  ))
tidy_d_summary
## # A tibble: 4 × 7
##   set   x_mean  x_sd x_var y_mean  y_sd y_var
##   <chr>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 1          9  3.32    11   7.50  2.03  4.13
## 2 2          9  3.32    11   7.50  2.03  4.13
## 3 3          9  3.32    11   7.5   2.03  4.12
## 4 4          9  3.32    11   7.50  2.03  4.12

81.4 建模

具体参考第 39 章整理的四种方法

tidy_d %>%
  group_nest(set) %>%
  mutate(
    fit = map(data, ~ lm(y ~ x, data = .x)),
    tidy = map(fit, broom::tidy),
    glance = map(fit, broom::glance)
  ) %>%
  unnest(tidy)

感觉大家更喜欢这种

tidy_d %>%
  group_by(set) %>%
  group_modify(
    ~ broom::tidy(lm(y ~ x, data = .))
  )
## # A tibble: 8 × 6
## # Groups:   set [4]
##   set   term        estimate std.error statistic p.value
##   <chr> <chr>          <dbl>     <dbl>     <dbl>   <dbl>
## 1 1     (Intercept)    3.00      1.12       2.67 0.0257 
## 2 1     x              0.500     0.118      4.24 0.00217
## 3 2     (Intercept)    3.00      1.13       2.67 0.0258 
## 4 2     x              0.5       0.118      4.24 0.00218
## 5 3     (Intercept)    3.00      1.12       2.67 0.0256 
## 6 3     x              0.500     0.118      4.24 0.00218
## 7 4     (Intercept)    3.00      1.12       2.67 0.0256 
## 8 4     x              0.500     0.118      4.24 0.00216
tidy_d %>%
  group_by(set) %>%
  summarise(
    broom::tidy(lm(y ~ x, data = cur_data()))
  )
## # A tibble: 8 × 6
## # Groups:   set [4]
##   set   term        estimate std.error statistic p.value
##   <chr> <chr>          <dbl>     <dbl>     <dbl>   <dbl>
## 1 1     (Intercept)    3.00      1.12       2.67 0.0257 
## 2 1     x              0.500     0.118      4.24 0.00217
## 3 2     (Intercept)    3.00      1.13       2.67 0.0258 
## 4 2     x              0.5       0.118      4.24 0.00218
## 5 3     (Intercept)    3.00      1.12       2.67 0.0256 
## 6 3     x              0.500     0.118      4.24 0.00218
## 7 4     (Intercept)    3.00      1.12       2.67 0.0256 
## 8 4     x              0.500     0.118      4.24 0.00216

81.5 可视化看看

tidy_d %>%
  ggplot(aes(x = x, y = y, colour = set)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  theme(legend.position = "none") +
  facet_wrap(~set)