6.2 El papel de Quetelet en la relevancia de la distribución normal

Adolphe Quetelet nació el 2 de febrero de 1796 en la ciudad belga de Gante. Su padre murió cuando contaba tan sólo siete años de edad. Obligado a buscar su propio sustento, Quetelet empezó a enseñar matemáticas a la edad de diecisiete años. Cuando no estaba ejerciendo de profesor, componía poesía; también escribió el libreto de una ópera, fue coautor de dos obras de teatro y tradujo diversas obras literarias. Sin embargo, su tema favorito seguían siendo las matemáticas, y fue la primera persona que obtuvo el grado de Doctor en Ciencias por la Universidad de Gante. En 1820, Quetelet fue elegido miembro de la Real Academia de Ciencias de Bruselas, y no tardó en convertirse en su asociado más activo.

Los años posteriores los dedicó especialmente a la enseñanza y a la publicación de diversos tratados de matemáticas, física y astronomía.

Quetelet solía empezar su curso de historia de la ciencia con la siguiente observación:

“Cuanto más avanzan las ciencias, más invaden el dominio de la matemática, que actúa como una especie de punto de convergencia. Podemos juzgar el grado de perfección al que ha llegado una ciencia por la mayor o menor facilidad con la que se le pueden aplicar cálculos”.

En diciembre de 1823, Quetelet fue a París enviado por el estado con el fin de que estudiase técnicas de observación en astronomía. Sin embargo, esta visita de tres meses a la que entonces era la capital matemática del mundo hizo que Quetelet fijase su atención en algo completamente distinto: la teoría de probabilidades. El principal responsable en despertar el entusiasmo de Quetelet en este tema fue el propio Laplace. Más adelante, Quetelet hablaría de este modo de su experiencia con la estadística y la probabilidad:

“El azar, ese misterioso vocablo del que tanto se ha abusado, se debe considerar nada más que como un velo para nuestra ignorancia; es un espectro que domina de forma absoluta la mente común, acostumbrada a considerar los acontecimientos de un modo aislado, pero que queda reducido a nada ante el filósofo, cuyo ojo abarca largas series de eventos y cuya lucidez no se extravía en variaciones, que desaparecen cuando adquiere una perspectiva suficiente para aprehender las leyes de la naturaleza.”

En esencia, Quetelet negaba el papel del azar y lo sustituía por la idea de que incluso los fenómenos sociales poseen causas, y que las regularidades que presentan los resultados estadísticos se pueden emplear para desentrañar las reglas que subyacen al orden social.

Con la intención de probar la validez de su punto de vista estadístico, Quetelet puso en marcha un ambicioso proyecto de recopilación de miles de medidas relacionadas con el cuerpo humano. Estudió, por ejemplo, la distribución de medidas de pecho de 5.738 soldados escoceses, y de altura de 100.000 reclutas franceses, y representó gráficamente la frecuencia de aparición de cada rasgo humano.

Luego construyó curvas similares incluso para aquellos rasgos «morales» (según él los denominaba) de los que poseía suficientes datos. Entre estas cualidades se hallaba la propensión al comportamiento criminal, los suicidios y los matrimonios. Para su sorpresa, Quetelet descubrió que todas las características humanas siguen lo que ahora se denomina una distribución normal.

Ya se tratase de alturas, pesos, longitudes de extremidades o incluso cualidades intelectuales determinadas a través de los antepasados de los tests psicológicos, una y otra vez aparecía el mismo tipo de curva. La curva no era desconocida para Quetelet; los matemáticos y los físicos la conocían desde mediados del siglo XVIII, y Quetelet estaba familiarizado con ella por su trabajo en astronomía; lo asombroso fue la asociación de esta curva con características humanas. Anteriormente, se la solía denominar curva de error, porque solía aparecer en cualquier tipo de errores de medida.

Quetelet llegó incluso más allá en sus conclusiones: consideró que el hecho de que las características humanas siguiesen la curva de error era indicativo de que el hombre medio (l’homme moyen) era lo que la naturaleza estaba tratando de generar. Según Quetelet, igual que los errores de fabricación crearían una distribución de longitudes alrededor de la longitud promedio (correcta) de un clavo, de igual modo los errores de la naturaleza estaban distribuidos alrededor de un tipo biológico preferible, y afirmó que las personas de una nación estaban agrupadas alrededor de su promedio, “de igual modo que los resultados de mediciones efectuadas sobre una misma persona, pero con instrumentos imprecisos que justificasen el tamaño de la variación”.

Puesto que, evidentemente, es deseable que la sociedad “exista y se conserve”, de ello se deduce que el comportamiento promedio es el comportamiento correcto. De este modo, la física social de Quetelet se fundó en el concepto de hombre medio,

“un individuo que, en un momento dado, es el epítome de todas las cualidades del hombre promedio, representaría toda la grandeza, belleza y bondad del ser”.

Esta inquietante veneración de la uniformidad tiene su corolario en el aborrecimiento de todas las singularidades:

“Las desviaciones más o menos pronunciadas del promedio han constituido […] la fealdad en el cuerpo como el vicio en la moral, y un estado enfermizo de la constitución general.”

La idea de que la perfección moral y física de la humanidad queda reflejada en la conformidad a unos datos matemáticos se remonta al Renacimiento, cuando, además, llegaron a definirse los instrumentos para cimentar la perfección. Pasado el tiempo, es fácil advertir en la teoría de Quetelet sobre el hombre medio un trasfondo de pureza racial y de rígida conformidad social. Aún en una época en la que se creía en la fisonomía esto era perfectamente racional, aunque eso no sirva de excusa para disculpar sus tintes siniestros.

Desde nuestra limitada perspectiva actual, el hecho sorprendente consiste en que prácticamente todos los detalles medibles de los seres humanos (de una etnia determinada) están distribuidos según un solo tipo de función matemática.

Tabla de estaturas de 26.000 soldados americanos del ejercito del Norte durante la guerra civil (“Phys. Soc,” i., p. 131; “Anthropom.,” p. 259):

Tabla de medidas alrededor del pecho, de los soldados del ejercito del Potomac (“Phys. Soc,” ii., 59; “Anthropom.,” p. 289):

Tabla de las medidas de fuerza en hombres, estimadas mediante un dinamómetro (“Anthropom.,” p. 365):

En un ejemplo descrito en un documento (Letters) en 1846, Quetelet comprobó que las alturas registradas de cien mil reclutas del ejército francés no se ajustaban con precisión a la distribución normal. Según los documentos oficiales, había 28620 hombres sobre cien mil que se encontraban por debajo de 1.57 metros. Concretamente, existían excesivos individuos en las clases (intervalos) correspondientes a las alturas entre 1.5 y 1.57, y demasiados entre 1.57 y 1.597 metros. Casualmente 1.57 era la talla que servía para excluir del servició militar. Con los cálculos correspondientes, se comprobó que 2275 individuos habían sido excluídos ilegalmente (habrían pagado a quien midiera para que les anotara una estatura más baja).

Pero la regularidad en la distribución de los datos no sólo se adaptaba a las características humanas. De los amplios estudios que realizó Quetelet sobre las estadísticas disponibles, observó que existian leyes que se adaptaban muy bien a otro tipo de situaciones, como el número de crímenes, de personas con enfermedad mental… En (Caponi 2013) podemos leer:

“Quetelet concluye, a partir de estudios cuantitativos y de la observación de datos empíricos, que cada año se repite, de manera exacta, el mismo número de crímenes, de suicidios, de matrimonios y de nacimientos en una población determinada. Analizando las estadísticas del ejército concluirá que los soldados presentaban, año tras año, las mismas medidas de peso, altura, tamaño de tórax. Observa que el número de alienados, internados en los asilos, se mantiene asombrosamente constante y que el tipo de crímenes y las penas aplicadas permanecen regulares según los datos suministrados por los registros civiles y los psiquiátricos. El único modo de poder explicar esas constantes que tanto seducían a Quetelet era analizar cada uno de estos hechos desde una perspectiva, ya no individual, sino poblacional. No se trataba de entender por qué razón ocurría cierto tipo de crimen y no otro, o por qué motivo un individuo presentaba una altura o peso determinados. Se trataba de explicar la repetición de fenómenos que, por su constancia, parecían indicar alguna fuerza común a todos ellos, una causa común capaz de mantener ese equilibrio, la acción de leyes tan regulares como las que rigen los astros o la caída de los cuerpos.”

Tabla de muertos en Francia desde 1827 a 1831:
library(readxl)
 datasets <- read_excel("Data/Crimenes-francia-Quetelet.xlsx")
library(xtable)
 library(pander)
print(datasets)
## # A tibble: 12 x 7
##    `Muerte Por` `1826` `1827` `1828` `1829` `1830`
##    <chr>         <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Crimenes en~    241    234    227    231    205
##  2 pistola          56     64     60     61     57
##  3 espada, sab~     15      7      8      7     12
##  4 cuchillo         33     40     34     46     44
##  5 bastones         23     28     31     24     12
##  6 piedras          20     20     21     21     11
##  7 instrumento~     35     40     42     45     46
##  8 estrangulam~      2      5      2      2      2
##  9 precipitaci~      6     16      6      1      4
## 10 patadas y g~     28     12     21     23     17
## 11 fuego             0      1      0      1      0
## 12 desconocidas     17      1      2      0      2
## # ... with 1 more variable: `1831` <dbl>
x=xtable(datasets)
pander(x)
Muerte Por 1826 1827 1828 1829 1830 1831
Crimenes en general 241 234 227 231 205 265
pistola 56 64 60 61 57 58
espada, sable 15 7 8 7 12 30
cuchillo 33 40 34 46 44 34
bastones 23 28 31 24 12 21
piedras 20 20 21 21 11 9
instrumentos de apuñalamiento o contusión 35 40 42 45 46 49
estrangulamiento 2 5 2 2 2 4
precipitación por barranco o equivalente 6 16 6 1 4 3
patadas y golpes de puño 28 12 21 23 17 26
fuego 0 1 0 1 0 0
desconocidas 17 1 2 0 2 2
library(readxl)
 duelos <- read_excel("Data/duelos-quetelet.xlsx")
library(xtable)
print(duelos)
## # A tibble: 5 x 5
##     año `muertes accide~ suicidios `duelos con mue~
##   <dbl>            <dbl>     <dbl>            <dbl>
## 1  1827             4744      1542               19
## 2  1828             4855      1754               29
## 3  1829             5048      1904               13
## 4   830             4478      1756               20
## 5  1831             5045      2084               23
## # ... with 1 more variable: `duelos sin muerte` <dbl>

Imagenes de las tablas originales de Quetelet:

“Hoy en día, la idea de los promedios se da por sentada. Forman parte del zumbido de los medios de comunicación diarios. Mientras escribo esto, el New York Times del día reporta la cantidad promedio de deuda estudiantil, el número promedio de televidentes de la televisión en horario de máxima audiencia y el salario promedio de los médicos. Pero cada vez que Quetelet revelaba un nuevo promedio, el público se asombraba. Por ejemplo, Quetelet mostró que la tasa promedio de suicidio era relativamente estable de año en año. Aunque esto no sería una noticia sorprendente en estos días, en la década de 1830 el suicidio fue visto como una decisión privada altamente irracional que no podía ajustarse a un patrón más profundo. En cambio, Quetelet mostró que los suicidios ocurrían con regularidad confiable y consistente. Y no sólo eso: Afirmó que la estabilidad de los hechos indicaba que todo el mundo tiene una propensión promedio al suicidio.” (Todd Rose, 2016) The Atlantic

Académicos y pensadores en todos los campos aclamaron a Quetelet como un genio para descubrir las leyes ocultas que gobiernan la sociedad. Florence Nightingale adoptó sus ideas en enfermería, declarando que el hombre promedio encarnaba la “Voluntad de Dios”. Karl Marx se basó en las ideas de Quetelet para desarrollar su teoría del comunismo, anunciando que el hombre común demostraba la existencia del determinismo histórico. El físico James Maxwell se inspiró en las matemáticas de Quetelet para formular la teoría clásica de la mecánica del gas. El médico John Snow utilizó las ideas de Quetelet para luchar contra el cólera en Londres, marcando el inicio del campo de la salud pública. Wilhelm Wundt, padre de la psicología experimental, leyó a Quetelet y proclamó: “Se puede afirmar sin exagerar que de los promedios estadísticos se puede aprender más psicología que de todos los filósofos, excepto de Aristóteles”.

El hombre medio se nos impone con una fuerza tal que es imposible introducir cualquier modificación. No solo las características fisiológicas como la cantidad de respiraciones o de pulsaciones por minuto, la altura o la fuerza que podemos alcanzar se definen en relación a la constancia representada por el hombre medio sino que también hechos sociales tan variados como la cantidad de crímenes, matrimonios, casos de alienación mental, suicidios, ya están preestablecidos de modo tal que escapa de nuestras manos cualquier modificación. Quetelet mantendrá en 1835 y en 1848 la misma certeza:

“Podemos enumerar anticipadamente cuántos individuos mancharán sus manos con la sangre de sus semejantes, cuántos serán falsificadores, cuántos envenenadores, con tanta precisión como podemos enumerar la cantidad de nacimientos y muertes que ocurrirán en una sociedad. La sociedad contiene en ella los gérmenes de todos los crímenes que se cometerán, al mismo tiempo que las condiciones para que ellos ocurran. Es ella quien prepara sus crímenes, y el culpable no es más que el instrumento que los ejecuta (Quetelet, 1848, p.315).

No existe espacio en este esquema explicativo para decisiones individuales, el ‘libre albedrío’ no es más que un obstáculo para la comprensión de las leyes que rigen las constantes biológicas y sociales. No se trata de afirmar que cada uno de nuestros actos está pre-determinado, ni de negar la libertad individual. El determinismo de Quetelet es más complejo. Dirá que las acciones realizadas de acuerdo a elecciones libres e individuales en nada alterarán la constancia de los fenómenos sociales, pues ellas se verán compensadas por otras acciones de signo contrario llevando a la permanencia de los mismos hechos sociales. De nada sirve que nos neguemos a provocar un crimen, este acto de libertad será compensado con la acción contraria posibilitando que se realice la natural tendencia a la constancia y a la repetición. Cabe retomar aquí una pregunta formulada por Halbwachs en 1912 (p.61), en su crítica a Quetelet: “¿Por qué considerar a la especie como un tipo del cual los individuos solo se alejan por accidente (o por efecto de causas accidentales)? ¿Por qué no pensar que esa semejanza resulta del conflicto de un cierto número de tendencias orgánicas que se equilibran entre sí?”.

Bibliografía

Caponi, Sandra. 2013. “Quetelet, El Hombre Medio Y El Saber Médico.” História, Ciências, Saúde-Manguinhos 20 (3). Fundação Oswaldo Cruz.