12.10 Problems: Portfolio Theory with Matrix Algebra

Exercise 1.4 (Solve for global minimum variance portfolio) The global minimum variance portfolio m=(m1,m2,m3) for the 3 asset case solves the constrained minimization problem:

min The Lagrangian for this problem is: \begin{align*} L(m_{1},m_{2},m_{3},\lambda) & =m_{A}^{2}\sigma_{A}^{2}+m_{B}^{2}\sigma_{B}^{2}+m_{C}^{2}\sigma_{C}^{2}\\ & +2m_{A}m_{B}\sigma_{AB}+2m_{A}m_{C}\sigma_{AC}+2m_{B}m_{C}\sigma_{BC}\\ & +\lambda(m_{A}+m_{B}+m_{C}-1) \end{align*}

  1. Write out the first order conditions
Exercise 1.5 (Solve for global minimum variance portfolio)
  • Use 2 x 2 matrix inversion rule to explicitly solve for
Exercise 12.1 (Solve for tangency portfolio)
  • Give explicit formula for tangency portfolio in 2 x 2 case