3.8 Derivatives of Simple Matrix Functions
Result: Let A be an n×n symmetric matrix, and let x and y be n×1 vectors. Then, ∂∂xn×1x′y=(∂∂x1x′y⋮∂∂xnx′y)=y,∂∂xn×1Ax=(∂∂x1(Ax)′⋮∂∂xn(Ax)′)=A,∂∂xn×1x′Ax=(∂∂x1x′Ax⋮∂∂xnx′Ax)=2Ax. We will demonstrate these results with simple examples. Let, A=(abbc), x=(x1x2),y=(y1y2). First, consider (3.12). Now, x′y=x1y1+x2y2. Then, ∂∂xx′y=(∂∂x1x′y∂∂x2x′y)=(∂∂x1(x1y1+x2y2)∂∂x2(x1y1+x2y2))=(y1y2)=y. Next, consider (3.13). Note that, Ax=(abbc)(x1x2)=(ax1+bx2bx1+cx2), and, (Ax)′=(ax1+bx2,bx1+cx2). Then, ∂∂xAx=(∂∂x1(ax1+bx2,bx1+cx2)∂∂x2(ax1+bx2,bx1+cx2))=(abbc)=A. Finally, consider (3.14). We have, x′Ax=(x1x2)(abbc)(x1x2)=ax21+2bx1x2+cx22. Then, ∂∂xx′Ax=(∂∂x1(ax21+2bx1x2+cx22)∂∂x2(ax21+2bx1x2+cx22))=(2ax1+2bx22bx1+2cx2)=2(abbc)(x1x2)=2Ax.
In portfolio risk budgeting (see chapter 14), asset i’s marginal contribution to portfolio volatility σp=(x′Σx)1/2 is given by MCRσi=∂σp∂xi=∂(x′Σx)1/2∂xi, and approximates how much portfolio volatility changes when the allocation to asset i increases by a small amount. Using the chain rule and matrix derivatives we can compute the entire vector of asset marginal contributions at once:
∂(x′Σx)1/2∂x=12(x′Σx)−1/2∂x′Σx∂x=12(x′Σx)−1/22Σx=(x′Σx)−1/2Σx=Σxσp.
Then asset i’s marginal contribution is given by the i-th row of Σxσp.
◼
Let R denote an n×1 random vector of asset returns with E[R]=μ and var(R)=Σ. The global minimum variance portfolio (see Chapter 11, Section 11.3) m solves the constrained minimization problem: min The Lagrangian function is: L(\mathbf{m},\lambda)=\mathbf{m}^{\prime}\Sigma \mathbf{m}+\lambda\mathbf{(m}^{\prime}\mathbf{1}-1). The first order conditions can be expressed in matrix notation as, \begin{align} \underset{(n\times1)}{\mathbf{0}} & =\frac{\partial L(\mathbf{m},\lambda)}{\partial\mathbf{m}}=\frac{\partial}{\partial\mathbf{m}}\mathbf{m}^{\prime}\Sigma \mathbf{m+}\frac{\partial}{\partial\mathbf{m}}\lambda\mathbf{(m}^{\prime}\mathbf{1}-1)=2\cdot\Sigma \mathbf{m+}\lambda\cdot\mathbf{1}\tag{3.16}\\ \underset{(1\times1)}{0} & =\frac{\partial L(\mathbf{m},\lambda)}{\partial\lambda}=\frac{\partial}{\partial\lambda}\mathbf{m}^{\prime}\Sigma \mathbf{m+}\frac{\partial}{\partial\lambda}\lambda\mathbf{(m}^{\prime}\mathbf{1}-1)=\mathbf{m}^{\prime}\mathbf{1}-1\tag{3.17} \end{align} These first order conditions represent a system of n+1 linear equations in n+1 unknowns (\mathbf{m} and \lambda). These equations can be represented in matrix form as the system \left[\begin{array}{cc} 2\Sigma & \mathbf{1}\\ \mathbf{1}^{\prime} & 0 \end{array}\right]\left[\begin{array}{c} \mathbf{m}\\ \lambda \end{array}\right]=\left[\begin{array}{c} \mathbf{0}\\ 1 \end{array}\right], which is of the form \mathbf{Az}=\mathbf{b} for \mathbf{A}=\left[\begin{array}{cc} 2\Sigma & \mathbf{1}\\ \mathbf{1}^{\prime} & 0 \end{array}\right],\,\mathbf{z}=\left[\begin{array}{c} \mathbf{m}\\ \lambda \end{array}\right],\,\mathbf{b}=\left[\begin{array}{c} \mathbf{0}\\ 1 \end{array}\right]. The portfolio weight vector \mathbf{m} can be found as the first n elements of \mathbf{z}=\mathbf{A}^{-1}\mathbf{b}.
\blacksquare