References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
Bozdogan, H. (1987). Model selection and akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345–370. https://doi.org/10.1007/BF02294361
Chen, J., Torre, J. de la, & Zhang, Z. (2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50(2), 123–140.
Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287–307. https://doi.org/10.1348/000711007X193957
de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115–130. https://doi.org/10.3102/1076998607309474
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179–199. https://doi.org/10.1007/s11336-011-9207-7
de la Torre, J. (2011). The Generalized DINA Model Framework. Psychometrika, 76(2), 179–199. https://doi.org/10.1007/s11336-011-9207-7
de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333–353. https://doi.org/10.1007/bf02295640
Everitt, B., & Howell, D. C. (Eds.). (2005). Encyclopedia of statistics in behavioral science. John Wiley & Sons.
Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 733–760.
Gu, Y. (2024). Going deep in diagnostic modeling: Deep cognitive diagnostic models (DeepCDMs). Psychometrika, 89(1), 118–150.
Haertel, E. H. (1989). Using Restricted Latent Class Models to Map the Skill Structure of Achievement Items. Journal of Educational Measurement, 26(4), 301–321. https://doi.org/10.1111/j.1745-3984.1989.tb00336.x
Han, Z., & Johnson, M. S. (2019). Global-and item-level model fit indices. Handbook of Diagnostic Classification Models: Models and Model Extensions, Applications, Software Packages, 265–285.
Hansen, M., Cai, L., Monroe, S., & Li, Z. (2014). Limited-information goodness-of-fit testing of diagnostic classification item response theory models. CRESST report 840. National Center for Research on Evaluation, Standards, and Student Testing (CRESST).
Hartz, S. M. (n.d.). A bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality [PhD thesis]. https://www.proquest.com/docview/305590285/abstract/20500E9536DD4FB4PQ/1
Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables. Psychometrika, 74(2), 191–210. https://doi.org/10.1007/s11336-008-9089-5
Junker, B. W., & Sijtsma, K. (2001). Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric Item Response Theory. Applied Psychological Measurement, 25(3), 258–272. https://doi.org/10.1177/01466210122032064
Kim, D., & Lindsay, B. G. (2015). Empirical identifiability in finite mixture models. Annals of the Institute of Statistical Mathematics, 67(4), 745–772. https://doi.org/10.1007/s10463-014-0474-9
Liu, Y., Tian, W., & Xin, T. (2016). An application of m 2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41(1), 3–26.
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64(2), 187–212. https://doi.org/10.1007/bf02294535
Maydeu-Olivares, A. (2013). Goodness-of-fit assessment of item response theory models. Measurement: Interdisciplinary Research and Perspectives, 11(3), 71–101.
Maydeu-Olivares, A., & Joe, H. (2005). Limited-and full-information estimation and goodness-of-fit testing in 2 n contingency tables: A unified framework. Journal of the American Statistical Association, 100(471), 1009–1020.
McDonald, R. P. (1982). A note on the investigation of local and global identifiability. Psychometrika, 47, 101–103.
Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.
Pavlov, G., Maydeu-Olivares, A., & Shi, D. (2021). Using the standardized root mean squared residual (SRMR) to assess exact fit in structural equation models. Educational and Psychological Measurement, 81(1), 110–130.
Ravand, H., & Robitzsch, A. (2018). Cognitive diagnostic model of best choice: A study of reading comprehension. Educational Psychology, 38(10), 1255–1277.
Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: theory, methods, and applications. Guilford Press.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333–343. https://doi.org/10.1007/BF02294360
Sorrel, M. A., Abad, F. J., Olea, J., Torre, J. de la, & Barrada, J. R. (2017). Inferential item-fit evaluation in cognitive diagnosis modeling. Applied Psychological Measurement, 41(8), 614–631.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series b (Statistical Methodology), 64(4), 583–639.
Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287–305. https://doi.org/10.1037/1082-989X.11.3.287
Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47(2), 175–186. https://doi.org/10.1007/BF02296273
Tjoe, H., & Torre, J. de la. (2014). The identification and validation process of proportional reasoning attributes: an application of a cognitive diagnosis modeling framework. Mathematics Education Research Journal, 26(2), 237–255. https://doi.org/10.1007/s13394-013-0090-7
Watanabe, S., & Opper, M. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(12).
Xu, G. (2019). Identifiability and Cognitive Diagnosis Models (M. von Davier & Y.-S. Lee, Eds.; pp. 333–357). Springer International Publishing. http://link.springer.com/10.1007/978-3-030-05584-4_16
Xu, G., & Zhang, S. (2016). Identifiability of diagnostic classification models. Psychometrika, 81, 625–649.
Yan, D., Mislevy, R. J., & Almond, R. G. (2003). Design and analysis in a cognitive assessment. ETS Research Report Series, 2003(2), i–47.
Zhan, P., Jiao, H., Man, K., & Wang, L. (2019b). Using JAGS for bayesian cognitive diagnosis modeling: A tutorial. Journal of Educational and Behavioral Statistics, 44(4), 473–503.
Zhan, P., Jiao, H., Man, K., & Wang, L. (2019a). Using JAGS for bayesian cognitive diagnosis modeling: A tutorial. Journal of Educational and Behavioral Statistics, 44(4), 473–503. https://doi.org/10.3102/1076998619826040