References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
Bozdogan, H. (1987). Model selection and akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345–370. https://doi.org/10.1007/BF02294361
Chen, J., Torre, J. de la, & Zhang, Z. (2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50(2), 123–140.
Cui, Y., Gierl, M. J., & Chang, H.-H. (2012). Estimating classification consistency and accuracy for cognitive diagnostic assessment. Journal of Educational Measurement, 49(1), 19–38.
Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287–307. https://doi.org/10.1348/000711007X193957
Davier, M. von. (2005). A general diagnostic model applied to language testing data. ETS Research Report Series, 2005(2), i–35.
de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115–130. https://doi.org/10.3102/1076998607309474
De la Torre, J. (2010). The partial-credit DINA model. International Meeting of the Psychometric Society.
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179–199. https://doi.org/10.1007/s11336-011-9207-7
de la Torre, J. (2011). The Generalized DINA Model Framework. Psychometrika, 76(2), 179–199. https://doi.org/10.1007/s11336-011-9207-7
de la Torre, J., & Chiu, C.-Y. (2016). A general method of empirical q-matrix validation. Psychometrika, 81(2), 253–273. https://doi.org/10.1007/s11336-015-9467-8
de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333–353. https://doi.org/10.1007/bf02295640
de la Torre, J., & Ma, W. (2016). Cognitive diagnosis modeling: A general framework approach and its implementation in r.
Everitt, B., & Howell, D. C. (Eds.). (2005). Encyclopedia of statistics in behavioral science. John Wiley & Sons.
Feinberg, R. A., & Rubright, J. D. (2016). Conducting simulation studies in psychometrics. Educational Measurement: Issues and Practice, 35(2), 36–49.
Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 733–760.
Gu, Y. (2024). Going deep in diagnostic modeling: Deep cognitive diagnostic models (DeepCDMs). Psychometrika, 89(1), 118–150.
Haertel, E. H. (1989). Using Restricted Latent Class Models to Map the Skill Structure of Achievement Items. Journal of Educational Measurement, 26(4), 301–321. https://doi.org/10.1111/j.1745-3984.1989.tb00336.x
Han, Z., & Johnson, M. S. (2019). Global-and item-level model fit indices. Handbook of Diagnostic Classification Models: Models and Model Extensions, Applications, Software Packages, 265–285.
Hansen, M. P. (2013). Hierarchical item response models for cognitive diagnosis. University of California, Los Angeles.
Hansen, M., Cai, L., Monroe, S., & Li, Z. (2014). Limited-information goodness-of-fit testing of diagnostic classification item response theory models. CRESST report 840. National Center for Research on Evaluation, Standards, and Student Testing (CRESST).
Hartz, S. M. (n.d.). A bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality [PhD thesis]. https://www.proquest.com/docview/305590285/abstract/20500E9536DD4FB4PQ/1
Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables. Psychometrika, 74(2), 191–210. https://doi.org/10.1007/s11336-008-9089-5
Huebner, A., & Wang, C. (2011). A note on comparing examinee classification methods for cognitive diagnosis models. Educational and Psychological Measurement, 71(2), 407–419.
Junker, B. W., & Sijtsma, K. (2001). Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric Item Response Theory. Applied Psychological Measurement, 25(3), 258–272. https://doi.org/10.1177/01466210122032064
Kim, D., & Lindsay, B. G. (2015). Empirical identifiability in finite mixture models. Annals of the Institute of Statistical Mathematics, 67(4), 745–772. https://doi.org/10.1007/s10463-014-0474-9
Kreitchmann, R. S., Torre, J. de la, Sorrel, M. A., Nájera, P., & Abad, F. J. (2023). Improving reliability estimation in cognitive diagnosis modeling. Behavior Research Methods, 55(7), 3446–3460.
Liu, R., & Jiang, Z. (2020). A general diagnostic classification model for rating scales. Behavior Research Methods, 52(1), 422–439.
Liu, Y., Tian, W., & Xin, T. (2016). An application of m 2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41(1), 3–26.
Ma, W., & de la Torre, J. (2020). An empirical q-matrix validation method for the sequential generalized DINA model. The British Journal of Mathematical and Statistical Psychology, 73(1), 142–163. https://doi.org/10.1111/bmsp.12156
Ma, W., Iaconangelo, C., & Torre, J. de la. (2016). Model similarity, model selection, and attribute classification. Applied Psychological Measurement, 40(3), 200–217.
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64(2), 187–212. https://doi.org/10.1007/bf02294535
Maydeu-Olivares, A. (2013). Goodness-of-fit assessment of item response theory models. Measurement: Interdisciplinary Research and Perspectives, 11(3), 71–101.
Maydeu-Olivares, A., & Joe, H. (2005). Limited-and full-information estimation and goodness-of-fit testing in 2 n contingency tables: A unified framework. Journal of the American Statistical Association, 100(471), 1009–1020.
McDonald, R. P. (1982). A note on the investigation of local and global identifiability. Psychometrika, 47, 101–103.
Nájera, P., Sorrel, M. A., & Abad, F. J. (2019). Reconsidering cutoff points in the general method of empirical q-matrix validation. Educational and Psychological Measurement, 79(4), 727–753. https://doi.org/10.1177/0013164418822700
Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.
Paulsen, J., Svetina, D., Feng, Y., & Valdivia, M. (2020). Examining the impact of differential item functioning on classification accuracy in cognitive diagnostic models. Applied Psychological Measurement, 44(4), 267–281.
Pavlov, G., Maydeu-Olivares, A., & Shi, D. (2021). Using the standardized root mean squared residual (SRMR) to assess exact fit in structural equation models. Educational and Psychological Measurement, 81(1), 110–130.
Ravand, H., & Robitzsch, A. (2018). Cognitive diagnostic model of best choice: A study of reading comprehension. Educational Psychology, 38(10), 1255–1277.
Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: theory, methods, and applications. Guilford Press.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333–343. https://doi.org/10.1007/BF02294360
Sorrel, M. A., Abad, F. J., Olea, J., Torre, J. de la, & Barrada, J. R. (2017). Inferential item-fit evaluation in cognitive diagnosis modeling. Applied Psychological Measurement, 41(8), 614–631.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series b (Statistical Methodology), 64(4), 583–639.
Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287–305. https://doi.org/10.1037/1082-989X.11.3.287
Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47(2), 175–186. https://doi.org/10.1007/BF02296273
Tjoe, H., & Torre, J. de la. (2014). The identification and validation process of proportional reasoning attributes: an application of a cognitive diagnosis modeling framework. Mathematics Education Research Journal, 26(2), 237–255. https://doi.org/10.1007/s13394-013-0090-7
Watanabe, S., & Opper, M. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(12).
Xu, G. (2019). Identifiability and Cognitive Diagnosis Models (M. von Davier & Y.-S. Lee, Eds.; pp. 333–357). Springer International Publishing. http://link.springer.com/10.1007/978-3-030-05584-4_16
Xu, G., & Zhang, S. (2016). Identifiability of diagnostic classification models. Psychometrika, 81, 625–649.
Yan, D., Mislevy, R. J., & Almond, R. G. (2003). Design and analysis in a cognitive assessment. ETS Research Report Series, 2003(2), i–47.
Zhan, P., Jiao, H., Man, K., & Wang, L. (2019b). Using JAGS for bayesian cognitive diagnosis modeling: A tutorial. Journal of Educational and Behavioral Statistics, 44(4), 473–503.
Zhan, P., Jiao, H., Man, K., & Wang, L. (2019a). Using JAGS for bayesian cognitive diagnosis modeling: A tutorial. Journal of Educational and Behavioral Statistics, 44(4), 473–503. https://doi.org/10.3102/1076998619826040