9.2 Attribute Estimation Process
Recall that for CDM analysis, we need to have two required matrices: the item response matrix and the Q-matrix. Let us use the following Q-matrix as an example.
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
## [4,] 1 0 1
## [5,] 0 1 1
## [6,] 1 1 0
## [7,] 1 0 1
## [8,] 1 1 0
## [9,] 0 1 1
## [10,] 1 1 1
Because there are three columns in the Q-matrix, K=3 and there are C=2K=8 latent classes. The attribute profiles of these 2K latent classes can be obtained by
Let us assume that we have item responses of 1000 students to these 10 items and the responses of the first 6 students are printed below:
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 0 1 1 0 1 1 1 0 1
## [2,] 1 1 1 1 1 1 1 1 0 1
## [3,] 1 1 1 0 1 1 1 0 1 0
## [4,] 1 0 1 1 1 1 1 1 1 0
## [5,] 0 0 1 1 0 0 1 0 0 0
## [6,] 1 0 0 0 0 0 0 1 0 1
Based on the EM algorithm discussed in previous class, we can fit the G-DINA model to the data to obtain item parameter estimates:
The item parameters can be obtained via the coef() function:
## $`Item 1`
## P(0) P(1)
## 0.21 0.90
##
## $`Item 2`
## P(0) P(1)
## 0.14 0.78
##
## $`Item 3`
## P(0) P(1)
## 0.089 0.909
##
## $`Item 4`
## P(00) P(10) P(01) P(11)
## 0.12 0.30 0.47 0.90
##
## $`Item 5`
## P(00) P(10) P(01) P(11)
## 0.106 0.079 0.090 0.823
##
## $`Item 6`
## P(00) P(10) P(01) P(11)
## 0.18 0.90 0.93 0.92
##
## $`Item 7`
## P(00) P(10) P(01) P(11)
## 0.054 0.471 0.392 0.771
##
## $`Item 8`
## P(00) P(10) P(01) P(11)
## 0.11 0.26 0.27 0.90
##
## $`Item 9`
## P(00) P(10) P(01) P(11)
## 0.10 0.37 0.42 0.81
##
## $`Item 10`
## P(000) P(100) P(010) P(001) P(110) P(101) P(011) P(111)
## 0.18 0.13 0.28 0.38 0.49 0.50 0.67 0.90
As we have obtained the item parameters, now we can use this item parameters to estimate the attributes for each examinee.