8.11 Item-level Relative Fit measures (Cont’d)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 0 1 1 0 1 1 1 0 1
## [2,] 1 1 1 1 1 1 1 1 0 1
## [3,] 1 1 1 0 1 1 1 0 1 0
## [4,] 1 0 1 1 1 1 1 1 1 0
## [5,] 0 0 1 1 0 0 1 0 0 0
## [6,] 1 0 0 0 0 0 0 1 0 1
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
## [4,] 1 0 1
## [5,] 0 1 1
## [6,] 1 1 0
## [7,] 1 0 1
## [8,] 1 1 0
## [9,] 0 1 1
## [10,] 1 1 1
To implement Wald test, we need to fit G-DINA model to the data first.
The Wald test can be requested by calling modelcomp function:
##
## Item-level model selection:
##
## test statistic: Wald
## Decision rule: largest p value rule at 0.05 alpha level.
## Adjusted p values were based on holm correction.
##
## models pvalues adj.pvalues
## Item 1 GDINA
## Item 2 GDINA
## Item 3 GDINA
## Item 4 RRUM 0.3338 1
## Item 5 DINA 0.7991 1
## Item 6 DINO 0.8077 1
## Item 7 ACDM 0.6123 1
## Item 8 RRUM 0.32 1
## Item 9 LLM 0.9021 1
## Item 10 RRUM 0.5674 1
To extract the Wald statistics,
## DINA DINO ACDM LLM RRUM
## Item 4 52.80 164.91 10.78 4.429 0.93
## Item 5 0.45 342.82 150.80 40.142 21.03
## Item 6 211.44 0.43 99.90 23.768 42.35
## Item 7 93.09 58.96 0.26 3.344 9.46
## Item 8 14.47 167.27 36.59 12.110 0.99
## Item 9 48.19 102.18 2.30 0.015 3.61
## Item 10 91.71 194.74 11.99 7.011 2.94
To extract the p values,
## DINA DINO ACDM LLM RRUM
## Item 4 0e+00 0.00 0.001 0.0353 0.3338
## Item 5 8e-01 0.00 0.000 0.0000 0.0000
## Item 6 0e+00 0.81 0.000 0.0000 0.0000
## Item 7 0e+00 0.00 0.612 0.0675 0.0021
## Item 8 7e-04 0.00 0.000 0.0005 0.3200
## Item 9 0e+00 0.00 0.129 0.9021 0.0574
## Item 10 0e+00 0.00 0.018 0.1353 0.5674
To extract the Wald-selected models, we can use extract() function:
To fit the selected models to the data, call GDINA function again: