References
Adams, D. C., & Collyer, M. L. (2016). On the comparison of the strength of morphological integration across morphometric datasets. Evolution, 70(11), 2623–2631. https://doi.org/10.1111/evo.13045
Allie, S., Buffler, A., Campbell, B., Lubben, F., Evangelinos, D., Psillos, D., & Valassiades, O. (2003). Teaching measurement in the introductory physics laboratory. Physics Teacher, 41(7), 394–401.
Andersson, P. G. (2023). The Wald confidence interval for a binomial p as an illuminating “bad” example. American Statistician, 77(4), 443–448. https://doi.org/10.1080/00031305.2023.2183257
Askey, R. (1999). Why does a negative x a negative = a positive? American Educator, 23(3), 4–5.
Blanca, M. J., Alarcón, R., Arnau, J., Bono, R., & Bendayan, R. (2018). Effect of variance ratio on ANOVA robustness: Might 1.5 be the limit? Behavior Research Methods, 50(3), 937–962. https://doi.org/10.3758/s13428-017-0918-2
Borowski, E. J., & Borwein, J. M. (2005). Collins Dictionary of Mathematics (2nd ed., p. 641). HarperCollins Publishers, London.
Bouma, G. D. (2000). The Research Process (4th ed., p. 242). Oxford University Press, Oxford, UK.
Box, G. E. P., Hunter, W. G., & Hunter, S. J. (1978). Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. John Wiley & Sons, New York, USA.
Burrows, J. E., Copplestone, D., Raines, K. E., Beresford, N. A., & Tinsley, M. C. (2022). Ecologically relevant radiation exposure triggers elevated metabolic rate and nectar consumption in bumblebees. Functional Ecology, 36(8), 1822–1833. https://doi.org/10.1111/1365-2435.14067
Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., & Borges, B. (2024). Shiny: Web application framework for R. https://shiny.posit.co/
Cheadle, C., Vawter, M. P., Freed, W. J., & Becker, K. G. (2003). Analysis of microarray data using Z score transformation. Journal of Molecular Diagnostics, 5(2), 73–81. https://doi.org/10.1016/S1525-1578(10)60455-2
Chernoff, E. J., & Zazkis, R. (2022). The simple reason a viral math equation stumped the internet. The Conversation. https://theconversation.com/the-simple-reason-a-viral-math-equation-stumped-the-internet-176518
Chiripanhura, B. (2011). Median and mean income analyses. Economic and Labour Market Review, 5, 45–64.
Choi, W., Lee, J. W., Huh, M. H., & Kang, S. H. (2003). An algorithm for computing the exact distribution of the Kruskal-Wallis test. Communications in Statistics Part B: Simulation and Computation, 32(4), 1029–1040. https://doi.org/10.1081/SAC-120023876
Clopper, C. J., & Pearson E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26(4), 404–413.
Courant, R., Robbins, H., & Stewart, I. (1996). What is Mathematics? (2nd ed., p. 566). Oxford University Press, Oxford, UK.
de Sousa Teixeira, L. P. (2022). Geochemical, textural and micromorphological properties of Angolan agroecosystem soils in relation to region, landscape position and land management [PhD thesis]. University of Stirling, Stirling, UK.
Delacre, M., Lakens, D., & Leys, C. (2017). Why psychologists should by default use Welch’s t-test instead of Student’s t-test. International Review of Social Psychology, 30(1), 92–101. https://doi.org/10.5334/irsp.82
Doane, D. P., & Seward, L. E. (2011). Measuring skewness: A forgotten statistic? Journal of Statistics Education, 19(2). https://doi.org/10.1080/10691898.2011.11889611
Duthie, A. B., Abbott, K. C., & Nason, J. D. (2015). Trade-offs and coexistence in fluctuating environments: evidence for a key dispersal-fecundity trade-off in five nonpollinating fig wasps. American Naturalist, 186(1), 151–158. https://doi.org/10.1086/681621
Duthie, A. B., & Nason, J. D. (2016). Plant connectivity underlies plant-pollinator-exploiter distributions in Ficus petiolaris and associated pollinating and non-pollinating fig wasps. Oikos, 125(11), 1597–1606. https://doi.org/10.1111/oik.02629
Dytham, C. (2011). Choosing and Using Statistics: A Biologist’s Guide (p. 298). John Wiley & Sons, West Sussex, UK.
Edwards, A. W. F. (1972). Likelihood: An account of the statistical concept of likelihood and its application to scientific inference (p. 235). Cambridge University Press, Cambridge, UK.
Elavsky, F., Bennett, C., & Moritz, D. (2022). How accessible is my visualization? Evaluating visualization accessibility with Chartability. Computer Graphics Forum, 41(3), 57–70. https://doi.org/10.1111/cgf.14522
Ellison, A. M. (2004). Bayesian inference in ecology. Ecology Letters, 7(6), 509–520. https://doi.org/10.1111/j.1461-0248.2004.00603.x
Ernst, M. D. (2004). Permutation methods: A basis for exact inference. Statistical Science, 19(4), 676–685. https://doi.org/10.1214/088342304000000396
Fowler, J., Cohen, L., & Jarvis, P. (1998). Practical Statistics for Field Biology (2nd ed., p. 259). John Wiley & Sons.
Freedman, D., Pisani, R., & Purves, R. (2011). Statistics (4th ed., p. 576). W. W. Norton & Company, New York, USA.
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., … Zheng, B. (2022). Global carbon budget 2022. Earth System Science Data, 14(11), 4811–4900. https://doi.org/10.5194/essd-14-4811-2022
Fryer, H. C. (1966). Concepts and Methods of Experimental Statistics (p. 602). Allyn & Bacon, Boston, USA.
Fuentes-Montemayor, E., Park, K. J., Cordts, K., & Watts, K. (2022). The long-term development of temperate woodland creation sites: from tree saplings to mature woodlands. Forestry, 95, 28–37. https://doi.org/10.1093/forestry/cpab027
Fuentes-Montemayor, E., Watts, K., Sansum, P., Scott, W., & Park, K. J. (2022). Moth community responses to woodland creation: The influence of woodland age, patch characteristics and landscape attributes. Diversity and Distributions, 28(9), 1993–2007. https://doi.org/10.1111/ddi.13599
Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of Bayesian statistics. British Journal of Mathematical and Statistical Psychology, 66(1), 8–38. https://doi.org/10.1111/j.2044-8317.2011.02037.x
Gotelli, N. J. (2001). A Primer of Ecology (3rd ed., p. 265). Sinauer Associates, Inc., Sunderland, Massachusetts, USA.
Grafen, A., & Hails, R. (2022). Modern Statistics for the Life Sciences (p. 351). Oxford University Press, Oxford, UK.
Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. European Journal of Epidemiology, 31(4), 337–350. https://doi.org/10.1007/s10654-016-0149-3
Groeneveld, R. A., & Meeden, G. (1984). Measuring skewness and kurtosis. Journal of the Royal Statistical Society. Series D (The Statistician), 33(4), 391–399.
Gupta, S. (2020). Units of measurement: History, fundamentals and redefining the SI base units. Springer. https://doi.org/10.1007/978-3-030-43969-9
Hardy, G. H. (1908). Mendelian proportions in a mixed population. Science, 28(706), 49–50. https://doi.org/10.1126/science.28.706.49
Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D. (2015). The extent and consequences of p-hacking in science. PLoS Biology, 13(3), e1002106. https://doi.org/10.1371/journal.pbio.1002106
Hyndman, R. J., & Fan, Y. (1996). Sample quantiles in statistical packages. American Statistician, 50(4), 361–365. https://doi.org/10.1080/00031305.1996.10473566
Johnson, D. H. (1995). Statistical sirens: The allure of nonparametrics. Ecology, 76(6), 1998–2000.
Kelleher, C., & Wagener, T. (2011). Ten guidelines for effective data visualization in scientific publications. Environmental Modelling and Software, 26(6), 822–827. https://doi.org/10.1016/j.envsoft.2010.12.006
Kruskal, W. H. (1952). A nonparametric test for the several sample problem. The Annals of Mathematical Statistics, 23(4), 525–540.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. https://doi.org/10.1080/01621459.1952.10483441
Lande, R. (1977). On comparing coefficients of variation. Systematic Zoology, 26(2), 214–217.
Law, A., Bunnefeld, N., & Willby, N. J. (2014). Beavers and lilies: Selective herbivory and adaptive foraging behaviour. Freshwater Biology, 59(2), 224–232. https://doi.org/10.1111/fwb.12259
Lee, P. (1997). Bayesian statistics: An introduction, 344 pp. Edward Arnold, London.
Ludbrook, J., & Dudley, H. (1998). Why permutation tests are superior to t and F tests in biomedical research. American Statistician, 52(2), 127–132.
Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002). The importance of the normality assumption in large public health data sets. Annual Review of Public Health, 23, 151–169. https://doi.org/10.1146/annurev.publheath.23.100901.140546
Manly, B. F. J. (2007). Randomization, Bootstrap and Monte Carlo Methods in Biology (3rd ed.). Chapman & Hall/CRC, Boca Raton, USA.
Mayo, D. G. (1996). Error and the Growth of Experimental Knowledge (p. 493). University of Chicago Press, Chicago, USA.
Mayo, D. G. (2019). P-value thresholds: Forfeit at your peril. European Journal of Clinical Investigation, 49(10), 1–4. https://doi.org/10.1111/eci.13170
Mayo, D. G. (2021). Significance tests: Vitiated or vindicated by the replication crisis in psychology? Review of Philosophy and Psychology, 12(1), 101–120. https://doi.org/10.1007/s13164-020-00501-w
McDonald, J. B., Sorensen, J., & Turley, P. A. (2013). Skewness and kurtosis properties of income distribution models. Review of Income and Wealth, 59(2), 360–374. https://doi.org/10.1111/j.1475-4991.2011.00478.x
Mclean, R. A., Sanders, W. L., & Stroup, W. W. (1991). A unified approach to mixed linear models. American Statistician, 45(1), 54–64.
McShane, B. B., Gal, D., Gelman, A., Robert, C., & Tackett, J. L. (2019). Abandon statistical significance. American Statistician, 73, 235–245. https://doi.org/10.1080/00031305.2018.1527253
Miller, I., & Miller, M. (2004). John E. Freund’s mathematical statistics (7th ed., p. 614). Pearson Prentice Hall, Upper Saddle River, New Jersey, USA.
Morrissey, M. B., & Ruxton, G. D. (2018). Multiple regression is not multiple regressions: The meaning of multiple regression and the non-problem of collinearity. Philosophy, Theory, and Practice in Biology, 10(20180709). https://doi.org/10.3998/ptpbio.16039257.0010.003
Narum, S. R. (2006). Beyond Bonferroni: Less conservative analyses for conservation genetics. Conservation Genetics, 7(5), 783–787. https://doi.org/10.1007/s10592-005-9056-y
Navarro, D. J., & Foxcroft, D. R. (2022). Learning Statistics with Jamovi (pp. 1–583). (Version 0.75). https://doi.org/10.24384/hgc3-7p15
Navidi, W. C. (2006). Statistics for engineers and scientists (Vol. 2). McGraw-Hill, New York, USA.
Pandey, S., & Bright, C. L. (2008). What are degrees of freedom? Social Work Research, 32(2), 119–128. https://doi.org/10.1080/00031305.1974.10479077
Pastor, J. (2008). Mathematical Ecology of Populations and Ecosystems (pp. 1–50). John Wiley & Sons, Inc., West Sussex, England.
Pélabon, C., Hilde, C. H., Einum, S., & Gamelon, M. (2020). On the use of the coefficient of variation to quantify and compare trait variation. Evolution Letters, 4(3), 180–188. https://doi.org/10.1002/evl3.171
Preston, C. M., & Schmidt, M. W. I. (2006). Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences, 3(4), 397–420. https://doi.org/10.5194/bg-3-397-2006
Quinn, T. J. (1995). Base units of the Système International d’Unités, their accuracy, dissemination and international traceability. Metrologia, 31(6), 515–527. https://doi.org/10.1088/0026-1394/31/6/011
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rabinovich, S. G. (2013). Evaluating Measurement Accuracy: A Practical Approach. Springer Science & Business Media. https://doi.org/10.1007/978-3-319-60125-0
Rahman, N. A. (1968). A Course in Theoretical Statistics (p. 542). Charles Griffin & Company, London.
Reed, J. F. (2007). Better binomial confidence intervals. Journal of Modern Applied Statistical Methods, 6(1), 153–161. https://doi.org/10.22237/jmasm/1177992840
Reichmann, W. J. (1970). Use and Abuse of Statistics (3rd ed., p. 345). Penguin Books, London.
Reisser, M., Purves, R. S., Schmidt, M. W. I., & Abiven, S. (2016). Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Frontiers in Earth Science, 4, 1–14. https://doi.org/10.3389/feart.2016.00080
Rencher, A. C. (2000). Linear Models in Statistics (p. 578). John Wiley & Sons, Inc., Provo, Utah, USA.
Rihs, M., & Mayer, B. (2018). distrACTION-calculating and plotting distributions. jamovi.org.
Rodgers, J. L., & Nicewander, W. (1988). Thirteen ways to look at the correlation coefficient. American Statistician, 42(1), 59–66.
Rowntree, D. (2018). Statistics Without Tears (p. 199). Penguin, Milton Keynes, UK.
RStudio Team. (2020). RStudio: Integrated development environment for r. RStudio, PBC. http://www.rstudio.com/
Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behavioral Ecology, 17(4), 688–690. https://doi.org/10.1093/beheco/ark016
Santín, C., Doerr, S. H., Kane, E. S., Masiello, C. A., Ohlson, M., Rosa, J. M. de la, Preston, C. M., & Dittmar, T. (2016). Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 22(1), 76–91. https://doi.org/10.1111/gcb.12985
Schilling, M. F., & Doi, J. A. (2014). A coverage probability approach to finding an optimal binomial confidence procedure. American Statistician, 68(3), 133–145. https://doi.org/10.1080/00031305.2014.899274
Schloerke, B., & Chang, W. (2023). Shinylive: Run ’shiny’ applications in the browser. https://CRAN.R-project.org/package=shinylive
Schmider, E., Ziegler, M., Danay, E., Beyer, L., & Bühner, M. (2010). Is it really robust?: Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology, 6(4), 147–151. https://doi.org/10.1027/1614-2241/a000016
Slakter, M. J. (1968). Accuracy of an approximation to the power of the chi-square goodness of fit test with small but equal expected frequencies. Journal of the American Statistical Association, 63(323), 912–918. https://doi.org/10.1080/01621459.1968.11009319
Sokal, R. R., & Rohlf, F. J. (1995). Biometry (3rd ed., p. 887). W. H. Freeman & Company, New York, USA.
Spiegelhalter, D. (2019). The Art of Statistics Learning from Data (p. 426). Penguin, Milton Keynes, UK.
Stanton-Geddes, J., De Freitas, C. G., & De Sales Dambros, C. (2014). In defense of P values: Comment on the statistical methods actually used by ecologists. Ecology, 95(3), 637–642. https://doi.org/10.1890/13-1156.1
Stewart, I. (2008). Taming the Infinite (p. 384). Quercus, London, UK.
Stock, M., Davis, R., De Mirandés, E., & Milton, M. J. T. (2019). Corrigendum: The revision of the SI – the result of three decades of progress in metrology. Metrologia, 56(4). https://doi.org/10.1088/1681-7575/ab28a8
Suárez, M. (2020). Philosophy of Probability and Statistical Modelling (R. Northcott & J. Stegenga, Eds.; p. 72). Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/9781108985826
Tate, M. W., & Hyer, L. A. (1973). Inaccuracy of the \(X^{2}\) test of goodness of fit when expected frequencies are small. Journal of the American Statistical Association, 68(344), 836–841. https://doi.org/10.1080/01621459.1973.10481433
The jamovi project. (2024). Jamovi (version 2.5). https://www.jamovi.org
Thulin, M. (2014). The cost of using exact confidence intervals for a binomial proportion. Electronic Journal of Statistics, 8(1), 817–840. https://doi.org/10.1214/14-EJS909
Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2), 99–114.
Upton, G., & Cook, I. (2014). Dictionary of Statistics (3rd ed., p. 488). Oxford University Press, Oxford, UK.
Wardlaw, A. C. (1985). Practical Statistics for Experimental Biologists (p. 290). John Wiley & Sons, Chichester, UK.
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: Context, process, and purpose. American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108
Weiblen, G. D. (2002). How to be a fig wasp. Annual Review of Entomology, 47, 299–330.
Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29(3/4), 350. https://doi.org/10.2307/2332010
Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59(10), 1–23. https://doi.org/10.18637/jss.v059.i10
Wickham, H. (2021). Mastering shiny. O’Reilly Media. https://mastering-shiny.org/
Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Chapman & Hall/CRC. http://yihui.name/knitr/
Xie, Y. (2016). Bookdown: Authoring books and technical documents with R markdown. Chapman & Hall/CRC, Boca Raton, USA. https://bookdown.org/yihui/bookdown
Xie, Y. (2023). Bookdown: Authoring books and technical documents with R markdown. https://github.com/rstudio/bookdown
Yee, A. J. (2019). Google Cloud Topples the Pi Record. http://www.numberworld.org/blogs/2019_3_14_pi_record/