References
Aitchison, J., and C. G. G. Aitken. 1976. “Multivariate Binary Discrimination by the Kernel Method.” Biometrika 63 (3): 413–20. https://doi.org/10.1093/biomet/63.3.413.
Allaire, J. J., Y. Xie, J. McPherson, J. Luraschi, K. Ushey, A. Atkins, H. Wickham, J. Cheng, W. Chang, and R. Iannone. 2020. rmarkdown: Dynamic Documents for R. https://github.com/rstudio/rmarkdown.
Anderson, T. W. 1962. “On the Distribution of the Two-Sample Cramer-von Mises Criterion.” The Annals of Mathematical Statistics 33 (3): 1148–59. https://doi.org/10.1214/aoms/1177704477.
Barrio, E. del. 2007. “Empirical and Quantile Processes in the Asymptotic Theory of Goodness-of-Fit Tests.” In Lectures on Empirical Processes, 1–92. EMS Series of Lectures in Mathematics. Zürich: European Mathematical Society. https://doi.org/10.4171/027.
Benjamini, Y. 1988. “Opening the Box of a Boxplot.” The American Statistician 42 (4): 257–62. https://doi.org/10.1080/00031305.1988.10475580.
Blum, J. R., J. Kiefer, and M. Rosenblatt. 1961. “Distribution Free Tests of Independence Based on the Sample Distribution Function.” The Annals of Mathematical Statistics 32 (2): 485–98. https://doi.org/10.1214/aoms/1177705055.
Chacón, J. E. 2015. “A Population Background for Nonparametric Density-Based Clustering.” Statistical Science 30 (4): 518–32. https://doi.org/10.1214/15-STS526.
Chacón, J. E., and T. Duong. 2018. Multivariate Kernel Smoothing and Its Applications. Vol. 160. Monographs on Statistics and Applied Probability. Boca Raton: CRC Press. https://doi.org/10.1201/9780429485572.
Cuesta-Albertos, J. A., A. Gordaliza, and C. Matrán. 1997. “Trimmed \(k\)-Means: An Attempt to Robustify Quantizers” 25 (2): 553–76. https://doi.org/10.1214/aos/1031833664.
D’Agostino, R. B., and M. A. Stephens, eds. 1986. Goodness-of-Fit Techniques. Vol. 68. Statistics: Textbooks and Monographs. New York: Marcel Dekker. https://www.routledge.com/Goodness-of-Fit-Techniques/DAgostino/p/book/9780367580346.
Dallal, G. E., and L. Wilkinson. 1986. “An Analytic Approximation to the Distribution of Lilliefors’s Test Statistic for Normality.” The American Statistician 40 (4): 294–96. https://doi.org/10.1080/00031305.1986.10475419.
DasGupta, A. 2008. Asymptotic Theory of Statistics and Probability. Springer Texts in Statistics. New York: Springer. https://doi.org/10.1007/978-0-387-75971-5.
Devroye, L., and L. Györfi. 1985. Nonparametric Density Estimation. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons. https://www.szit.bme.hu/~gyorfi/L1bookBW.pdf.
Duong, T. 2020. ks: Kernel Smoothing. https://CRAN.R-project.org/package=ks.
ESA. 1997. The Hipparcos and Tycho Catalogues. Vol. 1200. ESA SP. Noordwijk: ESA Publication Division. https://doi.org/https://www.cosmos.esa.int/web/hipparcos/catalogues.
Fan, J., and I. Gijbels. 1996. Local Polynomial Modelling and Its Applications. Vol. 66. Monographs on Statistics and Applied Probability. London: Chapman & Hall. https://doi.org/10.1201/9780203748725.
Fukunaga, K., and L. D. Hostetler. 1975. “The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition.” IEEE Transactions on Information Theory 21 (1): 32–40. https://doi.org/10.1109/tit.1975.1055330.
García-Portugués, E. 2022. Notes for Predictive Modeling. https://bookdown.org/egarpor/PM-UC3M/.
Genovese, C. R., M. Perone-Pacifico, I. Verdinelli, and L. Wasserman. 2014. “Nonparametric Ridge Estimation.” The Annals of Statistics 42 (4): 1511–45. https://doi.org/10.1214/14-AOS1218.
González-Manteiga, W., and R. M. Crujeiras. 2013. “An Updated Review of Goodness-of-Fit Tests for Regression Models.” TEST 22 (3): 361–411. https://doi.org/10.1007/s11749-013-0327-5.
Hardle, W., and J. S. Marron. 1991. “Bootstrap Simultaneous Error Bars for Nonparametric Regression.” The Annals of Statistics 19 (2): 778–96. https://doi.org/10.1214/aos/1176348120.
Hayfield, T., and J. S. Racine. 2008. “Nonparametric Econometrics: The np Package.” Journal of Statistical Software 27 (5): 1–32. https://doi.org/10.18637/jss.v027.i05.
Hintze, J. L., and R. D. Nelson. 1998. “Violin Plots: A Box Plot-Density Trace Synergism.” The American Statistician 52 (2): 181–84. https://doi.org/10.1080/00031305.1998.10480559.
James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning. Vol. 103. Springer Texts in Statistics. New York: Springer. https://doi.org/10.1007/978-1-4614-7138-7.
Li, Q., and J. S. Racine. 2007. Nonparametric Econometrics. Princeton: Princeton University Press. https://press.princeton.edu/books/hardcover/9780691121611/nonparametric-econometrics.
Lilliefors, H. W. 1967. “On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown.” Journal of the American Statistical Association 62 (318): 399–402. https://doi.org/10.1080/01621459.1967.10482916.
Liu, R. Y. 1988. “Bootstrap Procedures Under Some Non-i.i.d. Models.” The Annals of Statistics 16 (4): 1696–1708. https://doi.org/10.1214/aos/1176351062.
Loader, C. 1999. Local Regression and Likelihood. Statistics and Computing. New York: Springer. https://doi.org/10.2307/1270956.
Mann, H. B., and D. R. Whitney. 1947. “On a Test of Whether One of Two Random Variables Is Stochastically Larger Than the Other.” The Annals of Mathematical Statistics 18 (1): 50–60. https://doi.org/10.1214/aoms/1177730491.
Marron, J. S., and M. P. Wand. 1992. “Exact Mean Integrated Squared Error.” The Annals of Statistics 20 (2): 712–36. https://doi.org/10.1214/aos/1176348653.
Molina-Peralta, I., and E. García-Portugués. 2022. A First Course on Statistical Inference. Lecture notes. https://bookdown.org/egarpor/inference/.
Nadaraya, E. A. 1964. “On Estimating Regression.” Teoriya Veroyatnostei i Ee Primeneniya 9 (1): 157–59. https://doi.org/10.1137/1109020.
Nelsen, R. B. 2006. An Introduction to Copulas. Second. Springer Series in Statistics. New York: Springer-Verlag. https://doi.org/10.1007/0-387-28678-0.
Parzen, E. 1962. “On Estimation of a Probability Density Function and Mode.” Annals of Mathematical Statistics 33 (3): 1065–76. https://doi.org/10.1214/aoms/1177704472.
Petersen, K. B., and M. S. Pedersen. 2012. The Matrix Cookbook. Technical University of Denmark. http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html.
Pettitt, A. N. 1976. “A Two-Sample Anderson-Darling Rank Statistic.” Biometrika 63 (1): 161–68. https://doi.org/10.1093/biomet/63.1.161.
R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna. https://www.R-project.org/.
Rizzo, M. L., and G. J. Székely. 2016. “Energy Distance.” WIREs Computational Statistics 8 (1): 27–38. https://doi.org/10.1002/wics.1375.
Rosenblatt, M. 1956. “Remarks on Some Nonparametric Estimates of a Density Function.” Annals of Mathematical Statistics 27 (3): 832–37. https://doi.org/10.1214/aoms/1177728190.
Royston, P. 1993. “A Pocket-Calculator Algorithm for the Shapiro-Francia Test for Non-Normality: An Application to Medicine.” Statistics in Medicine 12 (2): 181–84. https://doi.org/10.1002/sim.4780120209.
Ruppert, D., S. J. Sheather, and M. P. Wand. 1995. “An Effective Bandwidth Selector for Local Least Squares Regression.” Journal of the American Statistical Association 90 (432): 1257–70. https://doi.org/10.1080/01621459.1995.10476630.
Scarsini, M. 1984. “On Measures of Concordance.” Stochastica 8: 201–18. https://dmle.icmat.es/revistas/detalle.php?numero=1689.
Scott, D. W. 2015. Multivariate Density Estimation. Second. Wiley Series in Probability and Statistics. Hoboken: John Wiley & Sons. https://doi.org/10.1002/9781118575574.
Scott, D. W., and G. R. Terrell. 1987. “Biased and Unbiased Cross-Validation in Density Estimation.” Journal of the American Statistical Association 82 (400): 1131–46. https://doi.org/10.1080/01621459.1987.10478550.
Shao, J. 1999. Mathematical Statistics. Springer Texts in Statistics. New York: Springer. https://doi.org/10.1007/b97553.
Sheather, S. J., and M. C. Jones. 1991. “A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation.” Journal of the Royal Statistical Society, Series B (Methodological) 53 (3): 683–90. https://doi.org/10.1111/j.2517-6161.1991.tb01857.x.
Sheskin, D. J. 2011. Handbook of Parametric and Nonparametric Statistical Procedures. Fifth. Boca Raton: CRC Press. https://doi.org/10.1201/9780429186196.
Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. London: Chapman & Hall. https://doi.org/10.1007/978-1-4899-3324-9.
Stephens, M. A. 1974. “EDF Statistics for Goodness of Fit and Some Comparisons.” Journal of the American Statistical Association 69 (347): 730–37. https://doi.org/10.2307/2286009.
Székely, G. J., and M. L. Rizzo. 2013. “Energy Statistics: A Class of Statistics Based on Distances.” Journal of Statistical Planning and Inference 143 (8): 1249–72. https://doi.org/10.1016/j.jspi.2013.03.018.
———. 2017. “The Energy of Data.” Annual Review of Statistics and Its Application 4 (1): 447–79. https://doi.org/10.1146/annurev-statistics-060116-054026.
Székely, G. J., M. L. Rizzo, and N. K. Bakirov. 2007. “Measuring and Testing Dependence by Correlation of Distances.” The Annals of Statistics 35 (6): 2769–94. https://doi.org/10.1214/009053607000000505.
Tukey, J. W. 1977. Exploratory Data Analysis. Behavioral Science: Quantitative Methods. Reading: Addison-Wesley Publishing Company.
Úcar, I. 2018. “Energy Efficiency in Wireless Communications for Mobile User Devices.” PhD thesis, Universidad Carlos III de Madrid. https://enchufa2.github.io/thesis/.
van der Maaten, L., and G. Hinton. 2008. “Visualizing Data Using \(t\)-SNE.” Journal of Machine Learning Research 9 (86): 2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html.
van der Vaart, A. W. 1998. Asymptotic Statistics. Vol. 3. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511802256.
Velilla, S. 1994. “A Goodness-of-Fit Test for Autoregressive Moving-Average Models Based on the Standardized Sample Spectral Distribution of the Residuals.” Journal of Time Series Analysis 15 (6): 637–47. https://doi.org/10.1111/j.1467-9892.1994.tb00218.x.
Wand, M. P., and M. C. Jones. 1995. Kernel Smoothing. Vol. 60. Monographs on Statistics and Applied Probability. London: Chapman & Hall. https://doi.org/10.1201/b14876.
Wasserman, L. 2004. All of Statistics. Springer Texts in Statistics. New York: Springer. https://doi.org/10.1007/978-0-387-21736-9.
———. 2006. All of Nonparametric Statistics. Springer Texts in Statistics. New York: Springer. https://doi.org/10.1007/0-387-30623-4.
Watson, G. S. 1964. “Smooth Regression Analysis.” Sankhyā, Series A 26 (4): 359–72. https://www.jstor.org/stable/25049340.
Wickham, H., and L. Stryjewski. 2011. “40 Years of Boxplots.” https://vita.had.co.nz/papers/boxplots.pdf.
Wilcoxon, F. 1945. “Individual Comparisons by Ranking Methods.” Biometrics Bulletin 1 (6): 80–83. https://doi.org/10.2307/3001968.
Wu, C. F. J. 1986. “Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis.” The Annals of Statistics 14 (4): 1261–95. https://doi.org/10.1214/aos/1176350142.
Xie, Y. 2016. Bookdown: Authoring Books and Technical Documents with R Markdown. The r Series. Boca Raton: CRC Press. https://bookdown.org/yihui/bookdown/.
———. 2020. knitr: A General-Purpose Package for Dynamic Report Generation in R. https://CRAN.R-project.org/package=knitr.
Xie, Y., and J. J. Allaire. 2020. tufte: Tufte’s Styles for R Markdown Documents. https://CRAN.R-project.org/package=tufte.