References

Allaire, J. J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., … Iannone, R. (2020). rmarkdown: Dynamic documents for R. Retrieved from https://github.com/rstudio/rmarkdown
Anonymous Editorial. (1937). Mathematics and medicine. The Lancet. https://doi.org/10.1016/S0140-6736(00)86570-8
Bache, S. M., & Wickham, H. (2014). magrittr: A forward-pipe operator for R. Retrieved from https://CRAN.R-project.org/package=magrittr
Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta Psychologica, 44(3), 211–233. https://doi.org/10.1016/0001-6918(80)90046-3
Bar-Hillel, M., & Falk, R. (1982). Some teasers concerning conditional probabilities. Cognition, 11(2), 109–122. https://doi.org/10.1016/0010-0277(82)90021-X
Baumer, B. S., Kaplan, D. T., & Horton, N. J. (2021). Modern Data Science with R (2nd ed.). Retrieved from https://mdsr-book.github.io/mdsr2e/
Behrens, J. T. (1997). Principles and procedures of exploratory data analysis. Psychological Methods, 2(2), 131–160. https://doi.org/10.1037/1082-989X.2.2.131
Bertin, J. (2011). Semiology of graphics: Diagrams, networks, maps (Vol. 1). ESRI Press.
Billings, Z. (2021). bardr: Complete works of William Shakespeare in tidy format. Retrieved from https://CRAN.R-project.org/package=bardr
Binder, K., Krauss, S., & Wiesner, P. (2020). A new visualization for probabilistic situations containing two binary events: The frequency net. Frontiers in Psychology, 11, 750. https://doi.org/10.3389/fpsyg.2020.00750
Box, G. E. (1979). Robustness in the strategy of scientific model building. In Robustness in statistics (pp. 201–236). https://doi.org/10.1016/B978-0-12-438150-6.50018-2
Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical Association, 71(356), 791–799. https://doi.org/10.1080/01621459.1976.10480949
Cairo, A. (2012). The functional art: An introduction to information graphics and visualization. Berkeley CA: New Riders.
Cairo, A. (2016). The truthful art: Data, charts, and maps for communication. Berkeley CA: New Riders.
Chang, W. (2012). R graphics cookbook: Practical recipes for visualizing data (2nd ed.). Retrieved from https://r-graphics.org/
Craik, K. J. W. (1943). The nature of explanation. Cambridge, UK: Cambridge University Press.
Davenport, T. H., & Patil, D. J. (2012). Data scientist: The sexiest job of the 21st century. Harvard Business Review, 90(5), 70–76. Retrieved from https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
De Cruz, H., Neth, H., & Schlimm, D. (2010). The cognitive basis of arithmetic. In B. Löwe & T. Müller (Eds.), PhiMSAMP. Philosophy of mathematics: Sociological aspects and mathematical practice (pp. 59–106). Retrieved from http://www.lib.uni-bonn.de/PhiMSAMP/Data/Book/PhiMSAMP-bk_DeCruzNethSchlimm.pdf
De Veaux, R. D., Agarwal, M., Averett, M., Baumer, B. S., Bray, A., Bressoud, T. C., … others. (2017). Curriculum guidelines for undergraduate programs in data science. Annual Review of Statistics and Its Application, 4, 15–30. https://doi.org/10.1146/annurev-statistics-060116-053930
Donoho, D. (2017). 50 years of data science. Journal of Computational and Graphical Statistics, 26(4), 745–766. Retrieved from https://doi.org/10.1080/10618600.2017.1384734
Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine: Problems and opportunities. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty (pp. 249–267). https://doi.org/10.1017/CBO9780511809477.019
Farrell, S., & Lewandowsky, S. (2010). Computational models as aids to better reasoning in psychology. Current Directions in Psychological Science, 19(5), 329–335. https://doi.org/10.1177/0963721410386677
Farrell, S., & Lewandowsky, S. (2018). Computational modeling of cognition and behavior. Campbridge, UK: Cambridge University Press.
Friendly, M. (2008). A brief history of data visualization. In Handbook of data visualization (pp. 15–56). Springer.
Gardner, M. (1988). Time travel and other mathematical bewilderments. New York, NY: W.H. Freeman.
Gentner, D., & Stevens, A. L. (Eds.). (1983). Mental models. Mahwah, NJ: Lawrence Erlbaum Associates.
Gigerenzer, G. (2002). Reckoning with risk: Learning to live with uncertainty. London, UK: Penguin.
Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33(5), 587–606. https://doi.org/10.1016/j.socec.2004.09.033
Gigerenzer, G. (2014). Risk savvy: How to make good decisions. New York, NY: Penguin.
Gigerenzer, G., Gaissmaier, W., Kurz-Milcke, E., Schwartz, L. M., & Woloshin, S. (2007). Helping doctors and patients make sense of health statistics. Psychological Science in the Public Interest, 8(2), 53–96. https://doi.org/10.1111/j.1539-6053.2008.00033.x
Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102(4), 684–704. https://doi.org/10.1037/0033-295X.102.4.684
Grolemund, G. (2014). Hands-on programming with R: Write your own functions and simulations. Retrieved from https://rstudio-education.github.io/hopr/
Hahn, U., & Warren, P. A. (2009). Perceptions of randomness: Why three heads are better than four. Psychological Review, 116(2), 454–461. https://doi.org/10.1037/a0015241
Healy, K. (2018). Data visualization: A practical introduction. Retrieved from https://socviz.co/
Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., Couzin, I. D., Cognitive Search Research Group, & others. (2015). Exploration versus exploitation in space, mind, and society. Trends in Cognitive Sciences, 19(1), 46–54. https://doi.org/10.1016/j.tics.2014.10.004
Hintzman, D. L. (1991). Why are formal models useful in psychology. In S. L. William E. Hockley (Ed.), Relating theory and data: Essays on human memory in honor of Bennet B. Murdock (pp. 39–56). Hillsdale, NJ: Lawrence Erlbaum.
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1), 63–90. https://doi.org/10.1023/A:1022631118932
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Retrieved from https://www.statlearning.com/
Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge, UK: Cambridge University Press.
Kabacoff, R. (2018). Data visualization with R. Retrieved from https://rkabacoff.github.io/datavis/
Kahneman, D., & Tversky, A. (1972a). On prediction and judgement. ORI Research Monographs, 1(12), 430–454.
Kahneman, D., & Tversky, A. (1972b). Subjective probability: A judgment of representativeness. Cognitive Psychology, 3(3), 430–454. https://doi.org/10.1016/0010-0285(72)90016-3
Kelion, L. (2020). Excel: Why using Microsoft’s tool caused Covid-19 results to be lost. BBC News, (2020-10-05). Retrieved from https://www.bbc.com/news/technology-54423988
Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97–111. https://doi.org/10.1093/comjnl/27.2.97
Krauss, S., & Wang, X.-T. (2003). The psychology of the Monty Hall problem: Discovering psychological mechanisms for solving a tenacious brain teaser. Journal of Experimental Psychology: General, 132(1), 3–22. https://doi.org/10.1037/0096-3445.132.1.3
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Retrieved from http://appliedpredictivemodeling.com/
Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.
Lakatos, I., & Feyerabend, P. (1999). For and against method (M. Motterlini, Ed.). https://doi.org/10.7208/9780226467030
Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Retrieved from https://tor-lattimore.com/downloads/book/book.pdf
Lewandowsky, S., & Farrell, S. (2011). Computational modeling in cognition: Principles and practice. Thousand Oaks, CA: SAGE publications.
Luce, R. D. (1995). Four tensions concerning mathematical modeling in psychology. Annual Review of Psychology, 46, 1. https://doi.org/10.1146/annurev.ps.46.020195.000245
Marr, D. (1982). Vision. A computational investigation into the human representation and processing of visual information. New York, NY: W.H. Freeman; Co.
McDowell, M., & Jacobs, P. (2017). Meta-analysis of the effect of natural frequencies on Bayesian reasoning. Psychological Bulletin, 143(12), 1273–1312. https://doi.org/10.1037/bul0000126
Miller, C. C. (2013). Data science: The numbers of our lives. New York Times. Retrieved from https://nyti.ms/146mC6R
Mosteller, F. (1965). Fifty challenging problems in probability with solutions. Reading, MA: Addison-Wesley.
Müller, K. (2017). here: A simpler way to find your files. Retrieved from https://CRAN.R-project.org/package=here
Müller, K., & Wickham, H. (2021). tibble: Simple data frames. Retrieved from https://CRAN.R-project.org/package=tibble
Neth, H. (2021a). Data science for psychologists. Retrieved from https://bookdown.org/hneth/ds4psy/
Neth, H. (2021b). ds4psy: Data science for psychologists. Retrieved from https://CRAN.R-project.org/package=ds4psy
Neth, H., Gaisbauer, F., Gradwohl, N., & Gaissmaier, W. (2021). riskyr: Rendering risk literacy more transparent. Retrieved from https://riskyr.org/, https://CRAN.R-project.org/package=riskyr
Neth, H., & Gigerenzer, G. (2015). Heuristics: Tools for an uncertain world. In R. Scott & S. Kosslyn (Eds.), Emerging trends in the social and behavioral sciences. https://doi.org/10.1002/9781118900772.etrds0394
Neth, H., & Gradwohl, N. (2021). unikn: Graphical elements of the university of konstanz’s corporate design. Retrieved from https://CRAN.R-project.org/package=unikn
Neth, H., Gradwohl, N., Streeb, D., Keim, D. A., & Gaissmaier, W. (2021). Perspectives on the 2x2 matrix: Solving semantically distinct problems based on a shared structure of binary contingencies. Frontiers in Psychology, 11, 567817. https://doi.org/10.3389/fpsyg.2020.567817
Neth, H., Sims, C. R., & Gray, W. D. (2016). Rational task analysis: A methodology to benchmark bounded rationality. Minds and Machines, 26(1-2), 125–148. https://doi.org/10.1007/s11023-015-9368-8
Nickerson, R. S. (2000). Null hypothesis significance testing: A review of an old and continuing controversy. Psychological Methods, 5(2), 241–301. https://doi.org/10.1037/1082-989X.5.2.241
Page, S. E. (2018). The model thinker: What you need to know to make data work for you. New York, NY: Basic Books.
Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. New York, NY: Basic Books.
Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060), 1226–1227. https://doi.org/10.1126/science.1213847
Peng, R. D. (2016). R programming for data science. Retrieved from https://bookdown.org/rdpeng/rprogdatascience/
Peng, R. D. (2020). Exploratory Data Analysis with R. Retrieved from https://bookdown.org/rdpeng/exdata/
Peng, R. D., & Hicks, S. C. (2020). Reproducible research: A retrospective. arXiv Preprint arXiv:2007.12210. Retrieved from https://arxiv.org/abs/2007.12210
Phillips, N. D. (2018). YaRrr! The pirate’s guide to R. Retrieved from https://bookdown.org/ndphillips/YaRrr/
Phillips, N. D., Neth, H., Woike, J. K., & Gaissmaier, W. (2017). FFTrees: A toolbox to create, visualize, and evaluate fast-and-frugal decision trees. Judgment and Decision Making, 12(4), 344–368. Retrieved from http://journal.sjdm.org/17/17217/jdm17217.html
Pilkey, O. H., & Pilkey-Jarvis, L. (2007). Useless arithmetic: Why environmental scientists can’t predict the future. New York, NY: Columbia University Press.
R Core Team. (2021a). R: A language and environment for statistical computing. Retrieved from https://www.R-project.org
R Core Team. (2021b). R base: A language and environment for statistical computing. Retrieved from https://www.R-project.org
Savant, M. vos. (1990). Ask Marilyn. Parade Magazine, (September 9), p. 15.
Schlimm, D., & Neth, H. (2008). Modeling ancient and modern arithmetic practices: Addition and multiplication with Arabic and Roman numerals. In B. Love, K. McRae, & V. Sloutsky (Eds.), Proceedings of the 30th Annual Meeting of the Cognitive Science Society (pp. 2097–2102). Retrieved from http://nbn-resolving.de/urn:nbn:de:bsz:352-283870
Selvin, S. (1975). A problem in probability. American Statistician, 29, 67. https://doi.org/10.1080/00031305.1975.10479121
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632
Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129–138. https://doi.org/10.1037/h0042769
Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, MA: The MIT Press.
Streeb, D., El-Assady, M., Keim, D., & Chen, M. (2019). Why visualize? Untangling a large network of arguments. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2019.2940026
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). Retrieved from http://incompleteideas.net/book/the-book-2nd.html
Szepesvári, C. (2010). Algorithms for reinforcement learning (Vol. 4). Retrieved from https://sites.ualberta.ca/~szepesva/rlbook.html
Todd, P. M., Gigerenzer, G., & the ABC Research Group. (2012). Ecological rationality: Intelligence in the world. New York, NY: Oxford University Press.
Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, CT: Graphics Press.
Tufte, E. R. (2006). Beautiful evidence (Vol. 1). Cheshire, CT: Graphics Press.
Tufte, E. R., Goeler, N. H., & Benson, R. (1990). Envisioning information (Vol. 126). Cheshire, CT: Graphics Press.
Tukey, J. W. (1969). Analyzing data: Sanctification or detective work. American Psychologist, 2, 83–91. https://doi.org/10.1037/h0027108
Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.
Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34(1), 23–25. Retrieved from https://www.jstor.org/stable/2682991
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124
Unwin, A. (2008). Good graphics? In Handbook of data visualization (pp. 57–78). Springer.
Wickham, H. (2014a). Advanced R (1st ed.). Retrieved from http://adv-r.had.co.nz/
Wickham, H. (2014b). Tidy data. Journal of Statistical Software, 59(10), 1–23. https://doi.org/10.18637/jss.v059.i10
Wickham, H. (2015). R packages: Organize, test, document, and share your code. Retrieved from http://adv-r.had.co.nz/
Wickham, H. (2019a). Advanced R (2nd ed.). Retrieved from https://adv-r.hadley.nz/
Wickham, H. (2019b). tidyverse: Easily install and load the ’tidyverse’. Retrieved from https://CRAN.R-project.org/package=tidyverse
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., … Dunnington, D. (2020). ggplot2: Create elegant data visualisations using the grammar of graphics. Retrieved from https://CRAN.R-project.org/package=ggplot2
Wickham, H., François, R., Henry, L., & Müller, K. (2021). dplyr: A grammar of data manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr
Wickham, H., & Grolemund, G. (2017). R for data science: Import, tidy, transform, visualize, and model data. Retrieved from http://r4ds.had.co.nz
Wickham, H., & Henry, L. (2020). tidyr: Tidy messy data. Retrieved from https://CRAN.R-project.org/package=tidyr
Wickham, H., Hester, J., & Francois, R. (2018). readr: Read rectangular text data. Retrieved from https://CRAN.R-project.org/package=readr
Wilke, C. O. (2019). Fundamentals of data visualization: A primer on making informative and compelling figures. Retrieved from https://clauswilke.com/dataviz/
Xie, Y. (2021). knitr: A general-purpose package for dynamic report generation in R. Retrieved from https://yihui.org/knitr/
Yau, N. (2011). Visualize this: The FlowingData guide to design, visualization, and statistics. Hoboken, NJ: John Wiley & Sons.
Yau, N. (2013). Data points: Visualization that means something. Hoboken, NJ: John Wiley & Sons.
Yu, A. Z., Ronen, S., Hu, K., Lu, T., & Hidalgo, C. A. (2016). Pantheon 1.0, a manually verified dataset of globally famous biographies. Scientific Data, 3(1), 1–16. https://doi.org/10.1038/sdata.2015.75