Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and interpretation of computer programs (2nd ed.). The MIT Press.
Allaire, J. J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W., & Iannone, R. (2022). rmarkdown: Dynamic documents for R.
Anderson, J. R. (1990). The adaptive character of thought. Lawrence Erlbaum.
Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17–21.
Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211(4489), 1390–1396.
Bache, S. M., & Wickham, H. (2014). magrittr: A forward-pipe operator for R.
Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta Psychologica, 44(3), 211–233.
Bar-Hillel, M., & Falk, R. (1982). Some teasers concerning conditional probabilities. Cognition, 11(2), 109–122.
Bateman, S., Mandryk, R. L., Gutwin, C., Genest, A., McDine, D., & Brooks, C. (2010). Useful junk? The effects of visual embellishment on comprehension and memorability of charts. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2573–2582.
Baumer, B. S., Kaplan, D. T., & Horton, N. J. (2021). Modern Data Science with R (2nd ed.). Chapman; Hall/CRC.
Behrens, J. T. (1997). Principles and procedures of exploratory data analysis. Psychological Methods, 2(2), 131–160.
Bergstrom, C. T., & West, J. D. (2021). Calling bullshit: The art of skepticism in a data-driven world. Random House Trade Paperbacks.
Bertin, J. (2011). Semiology of graphics: Diagrams, networks, maps (Vol. 1). ESRI Press.
Billings, Z. (2021). bardr: Complete works of William Shakespeare in tidy format.
Binder, K., Krauss, S., & Wiesner, P. (2020). A new visualization for probabilistic situations containing two binary events: The frequency net. Frontiers in Psychology, 11, 750.
Box, G. E. (1979). Robustness in the strategy of scientific model building. In Robustness in statistics (pp. 201–236). Elsevier.
Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical Association, 71(356), 791–799.
Cairo, A. (2012). The functional art: An introduction to information graphics and visualization. New Riders.
Cairo, A. (2016). The truthful art: Data, charts, and maps for communication. New Riders.
Chang, W. (2012). R graphics cookbook: Practical recipes for visualizing data (2nd ed.). O’Reilly Media.
Craik, K. J. W. (1943). The nature of explanation. Cambridge University Press.
Davenport, T. H., & Patil, D. J. (2012). Data scientist: The sexiest job of the 21st century. Harvard Business Review, 90(5), 70–76.
De Cruz, H., Neth, H., & Schlimm, D. (2010). The cognitive basis of arithmetic. In B. Löwe & T. Müller (Eds.), PhiMSAMP. Philosophy of mathematics: Sociological aspects and mathematical practice (pp. 59–106). College Publications.
De Veaux, R. D., Agarwal, M., Averett, M., Baumer, B. S., Bray, A., Bressoud, T. C., Bryant, L., Cheng, L. Z., Francis, A., Gould, R., et al. (2017). Curriculum guidelines for undergraduate programs in data science. Annual Review of Statistics and Its Application, 4, 15–30.
Donoho, D. (2017). 50 years of data science. Journal of Computational and Graphical Statistics, 26(4), 745–766.
Dudeney, H. E. (1917). Amusements in mathematics. Nelson; Sons.
Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine: Problems and opportunities. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty (pp. 249–267). Cambridge University Press.
Editorial. (1937). Mathematics and medicine. The Lancet.
Editorial. (2009). The health illiteracy problem in the USA. The Lancet, 374, 2028.
Erickson, T., Wilkerson, M., Finzer, W., & Reichsman, F. (2019). Data moves. Technology Innovations in Statistics Education, 12(1).
Farrell, S., & Lewandowsky, S. (2010). Computational models as aids to better reasoning in psychology. Current Directions in Psychological Science, 19(5), 329–335.
Farrell, S., & Lewandowsky, S. (2018). Computational modeling of cognition and behavior. Cambridge University Press.
Frankfurt, H. G. (2009). On bullshit. Princeton University Press.
Friendly, M. (2008). A brief history of data visualization. In Handbook of data visualization (pp. 15–56). Springer.
Gardner, M. (1988). Time travel and other mathematical bewilderments. W.H. Freeman.
Gentner, D., & Stevens, A. L. (Eds.). (1983). Mental models. Lawrence Erlbaum Associates.
Gigerenzer, G. (2002). Reckoning with risk: Learning to live with uncertainty. Penguin.
Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33(5), 587–606.
Gigerenzer, G. (2014). Risk savvy: How to make good decisions. Penguin.
Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of Psychology, 62(1), 451–482.
Gigerenzer, G., Gaissmaier, W., Kurz-Milcke, E., Schwartz, L. M., & Woloshin, S. (2007). Helping doctors and patients make sense of health statistics. Psychological Science in the Public Interest, 8(2), 53–96.
Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102(4), 684–704.
Grolemund, G. (2014). Hands-on programming with R: Write your own functions and simulations. O’Reilly Media.
Hacking, I. (1990). The taming of chance (Vol. 17). Cambridge University Press.
Hahn, U., & Warren, P. A. (2009). Perceptions of randomness: Why three heads are better than four. Psychological Review, 116(2), 454–461.
Hahn, U., & Warren, P. A. (2010). Why three heads are a better bet than four: A reply to Sun, Tweney, and Wang (2010). Psychological Review, 117(2), 706–711.
Healy, K. (2018). Data visualization: A practical introduction. Princeton University Press.
Herrnstein, R. J. (1991). Experiments on stable suboptimality in individual behavior. The American Economic Review, 81(2), 360–364.
Herrnstein, R. J., & Prelec, D. (1991). Melioration: A theory of distributed choice. The Journal of Economic Perspectives, 5(3), 137–156.
Herrnstein, R. J., & Vaughan, W., Jr. (1980). Melioration and behavioral allocation. In J. E. R. Staddon (Ed.), Limits to action: The allocation of individual behavior (pp. 143–176). Academic Press.
Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., Couzin, I. D., Cognitive Search Research Group, et al. (2015). Exploration versus exploitation in space, mind, and society. Trends in Cognitive Sciences, 19(1), 46–54.
Hintzman, D. L. (1991). Why are formal models useful in psychology. In S. L. William E. Hockley (Ed.), Relating theory and data: Essays on human memory in honor of Bennet B. Murdock (pp. 39–56). Lawrence Erlbaum.
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1), 63–90.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning with applications in R (2nd edition). Springer.
Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge University Press.
Kabacoff, R. (2018). Data visualization with R. Quantitative Analysis Center.
Kahneman, D., & Tversky, A. (1972a). On prediction and judgement. ORI Research Monographs, 1(12), 430–454.
Kahneman, D., & Tversky, A. (1972b). Subjective probability: A judgment of representativeness. Cognitive Psychology, 3(3), 430–454.
Kelion, L. (2020). Excel: Why using Microsoft’s tool caused Covid-19 results to be lost. BBC News, 2020-10-05.
Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97–111.
Krauss, S., & Wang, X.-T. (2003). The psychology of the Monty Hall problem: Discovering psychological mechanisms for solving a tenacious brain teaser. Journal of Experimental Psychology: General, 132(1), 3–22.
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer.
Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago Press.
Kuleshov, V., & Precup, D. (2014). Algorithms for multi-armed bandit problems. arXiv Preprint arXiv:1402.6028.
Lakatos, I., & Feyerabend, P. (1999). For and against method (M. Motterlini, Ed.). University of Chicago Press.
Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.
Lewandowsky, S., & Farrell, S. (2011). Computational modeling in cognition: Principles and practice. SAGE publications.
Luce, R. D. (1995). Four tensions concerning mathematical modeling in psychology. Annual Review of Psychology, 46, 1.
Marr, D. (1982). Vision. A computational investigation into the human representation and processing of visual information. W.H. Freeman; Co.
Matloff, N. (2011). The art of R programming: A tour of statistical software design. No Starch Press.
McDowell, M., & Jacobs, P. (2017). Meta-analysis of the effect of natural frequencies on Bayesian reasoning. Psychological Bulletin, 143(12), 1273–1312.
Miller, C. C. (2013). Data science: The numbers of our lives. New York Times.
Mosteller, F. (1965). Fifty challenging problems in probability with solutions. Addison-Wesley.
Müller, K. (2017). here: A simpler way to find your files.
Müller, K., & Wickham, H. (2021). tibble: Simple data frames.
Neth, H. (2022a). Data science for psychologists. Social Psychology; Decision Sciences, University of Konstanz.
Neth, H. (2022b). ds4psy: Data science for psychologists. Social Psychology; Decision Sciences, University of Konstanz.
Neth, H., Gaisbauer, F., Gradwohl, N., & Gaissmaier, W. (2022). riskyr: Rendering risk literacy more transparent.,
Neth, H., & Gigerenzer, G. (2015). Heuristics: Tools for an uncertain world. In R. Scott & S. Kosslyn (Eds.), Emerging trends in the social and behavioral sciences. Wiley Online Library.
Neth, H., & Gradwohl, N. (2022). unikn: Graphical elements of the university of konstanz’s corporate design. Social Psychology; Decision Sciences, University of Konstanz.
Neth, H., Gradwohl, N., Streeb, D., Keim, D. A., & Gaissmaier, W. (2021). Perspectives on the 2x2 matrix: Solving semantically distinct problems based on a shared structure of binary contingencies. Frontiers in Psychology, 11, 567817.
Neth, H., Sims, C. R., & Gray, W. D. (2016). Rational task analysis: A methodology to benchmark bounded rationality. Minds and Machines, 26(1-2), 125–148.
Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2(2), 175–220.
Nickerson, R. S. (2000). Null hypothesis significance testing: A review of an old and continuing controversy. Psychological Methods, 5(2), 241–301.
Nowé, A., Vrancx, P., & De Hauwere, Y.-M. (2012). Game theory and multi-agent reinforcement learning. In M. Wiering & M. van Otterlo (Eds.), Reinforcement learning: State-of-the-art (pp. 441–470). Springer.
Page, S. E. (2018). The model thinker: What you need to know to make data work for you. Basic Books.
Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. Basic Books.
Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060), 1226–1227.
Peng, R. D. (2016). R programming for data science. Leanpub.
Peng, R. D. (2020). Exploratory Data Analysis with R. Leanpub.
Peng, R. D., & Hicks, S. C. (2020). Reproducible research: A retrospective. arXiv Preprint arXiv:2007.12210.
Phillips, N. D. (2018). YaRrr! The pirate’s guide to R.
Phillips, N. D., Neth, H., Woike, J. K., & Gaissmaier, W. (2017). FFTrees: A toolbox to create, visualize, and evaluate fast-and-frugal decision trees. Judgment and Decision Making, 12(4), 344–368.
Pilkey, O. H., & Pilkey-Jarvis, L. (2007). Useless arithmetic: Why environmental scientists can’t predict the future. Columbia University Press.
R Core Team. (2022a). R base: A language and environment for statistical computing. R Foundation for Statistical Computing.
R Core Team. (2022b). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rachlin, H., & Laibson, D. I. (Eds.). (1997). The matching law: Papers on psychology and economics by Richard Herrnstein. Russell Sage Foundation.
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). Appleton-Century-Crofts.
Ridsdale, C., Rothwell, J., Smit, M., Ali-Hassan, H., Bliemel, M., Irvine, D., Kelley, D., Matwin, S., & Wuetherick, B. (2015). Strategies and best practices for data literacy education: Knowledge synthesis report. Dalhousie University.
Ross, D. (2019). Game theory. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (winter 2019 edition).
Savant, M. vos. (1990). Ask Marilyn. Parade Magazine, (September 9), p. 15.
Schlimm, D., & Neth, H. (2008). Modeling ancient and modern arithmetic practices: Addition and multiplication with Arabic and Roman numerals. In B. Love, K. McRae, & V. Sloutsky (Eds.), Proceedings of the 30th Annual Meeting of the Cognitive Science Society (pp. 2097–2102). Cognitive Science Society.
Selvin, S. (1975). A problem in probability. American Statistician, 29, 67.
Silver, D., Singh, S., Precup, D., & Sutton, R. S. (2021). Reward is enough. Artificial Intelligence, 103535.
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366.
Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129–138.
Simon, H. A. (1996). The sciences of the artificial (3rd ed.). The MIT Press.
Sims, C. R., Neth, H., Jacobs, R. A., & Gray, W. D. (2013). Melioration as rational choice: Sequential decision making in uncertain environments. Psychological Review, 120(1), 139–154.
Streeb, D., El-Assady, M., Keim, D., & Chen, M. (2019). Why visualize? Untangling a large network of arguments. IEEE Transactions on Visualization and Computer Graphics.
Sun, Y., Tweney, R. D., & Wang, H. (2010). Occurrence and nonoccurrence of random sequences: Comment on Hahn and Warren (2009). Psychological Review, 117(2), 697–705.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT press.
Szepesvári, C. (2010). Algorithms for reinforcement learning (Vol. 4). Morgan & Claypool.
Szita, I. (2012). Reinforcement learning in games. In M. Wiering & M. van Otterlo (Eds.), Reinforcement learning: State-of-the-art (pp. 539–577). Springer.
Todd, P. M., Gigerenzer, G., & the ABC Research Group. (2012). Ecological rationality: Intelligence in the world. Oxford University Press.
Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Graphics Press.
Tufte, E. R. (2006). Beautiful evidence (Vol. 1). Graphics Press.
Tufte, E. R., Goeler, N. H., & Benson, R. (1990). Envisioning information (Vol. 126). Graphics Press.
Tukey, J. W. (1969). Analyzing data: Sanctification or detective work. American Psychologist, 2, 83–91.
Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34(1), 23–25.
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.
Unwin, A. (2008). Good graphics? In Handbook of data visualization (pp. 57–78). Springer.
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.
Wickham, H. (2014a). Advanced R (1st ed.). Chapman; Hall/CRC.
Wickham, H. (2014b). Tidy data. Journal of Statistical Software, 59(10), 1–23.
Wickham, H. (2019a). Advanced R (2nd ed.). Chapman; Hall/CRC.
Wickham, H. (2019b). tidyverse: Easily install and load the ’tidyverse’.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686.
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2020). ggplot2: Create elegant data visualisations using the grammar of graphics.
Wickham, H., François, R., Henry, L., & Müller, K. (2021). dplyr: A grammar of data manipulation.
Wickham, H., & Grolemund, G. (2017). R for data science: Import, tidy, transform, visualize, and model data. O’Reilly Media, Inc.
Wickham, H., & Henry, L. (2020). tidyr: Tidy messy data.
Wickham, H., Hester, J., & Bryan, J. (2022). readr: Read rectangular text data.
Wilke, C. O. (2019). Fundamentals of data visualization: A primer on making informative and compelling figures. O’Reilly Media.
Wu, K., Petersen, E., Ahmad, T., Burlinson, D., Tanis, S., & Szafir, D. A. (2021). Understanding data accessibility for people with intellectual and developmental disabilities. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
Xie, Y. (2021). knitr: A general-purpose package for dynamic report generation in R.
Yau, N. (2011). Visualize this: The FlowingData guide to design, visualization, and statistics. John Wiley & Sons.
Yau, N. (2013). Data points: Visualization that means something. John Wiley & Sons.
Yu, A. Z., Ronen, S., Hu, K., Lu, T., & Hidalgo, C. A. (2016). Pantheon 1.0, a manually verified dataset of globally famous biographies. Scientific Data, 3(1), 1–16.