19 Day 19 (June 29)
19.2 Regression and ANOVA
- Review of the linear model
- Regression, ANOVA, and t-test as special cases of the linear model
- Write the regression and ANOVA model out on white board
19.3 T-test
- Common statistical test taught in introductory statistics classes
Linear model representation
Example: comparing two means
library(faraway) <- PlantGrowth[-c(1:10),] df.plant $group <- factor(df.plant$group) df.plant boxplot(weight ~ group,df.plant,col="grey",ylim=c(0,7))
aggregate(weight ~ group, FUN=mean,data=df.plant)
## group weight ## 1 trt1 4.661 ## 2 trt2 5.526
Use
t.test()
function in R.t.test(weight ~ group-1,data = df.plant,var.equal = TRUE)
## ## Two Sample t-test ## ## data: weight by group ## t = -3.0101, df = 18, p-value = 0.007518 ## alternative hypothesis: true difference in means between group trt1 and group trt2 is not equal to 0 ## 95 percent confidence interval: ## -1.4687336 -0.2612664 ## sample estimates: ## mean in group trt1 mean in group trt2 ## 4.661 5.526
Use
lm()
function in R.# With "intercept" <- lm(weight ~ group,data = df.plant) m1 summary(m1)
## ## Call: ## lm(formula = weight ~ group, data = df.plant) ## ## Residuals: ## Min 1Q Median 3Q Max ## -1.0710 -0.3573 -0.0910 0.2402 1.3690 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 4.6610 0.2032 22.94 8.93e-15 *** ## grouptrt2 0.8650 0.2874 3.01 0.00752 ** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.6426 on 18 degrees of freedom ## Multiple R-squared: 0.3348, Adjusted R-squared: 0.2979 ## F-statistic: 9.061 on 1 and 18 DF, p-value: 0.007518
# Without "intercept" <- lm(weight ~ group-1,data = df.plant) m2 summary(m2)
## ## Call: ## lm(formula = weight ~ group - 1, data = df.plant) ## ## Residuals: ## Min 1Q Median 3Q Max ## -1.0710 -0.3573 -0.0910 0.2402 1.3690 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## grouptrt1 4.6610 0.2032 22.94 8.93e-15 *** ## grouptrt2 5.5260 0.2032 27.20 4.52e-16 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.6426 on 18 degrees of freedom ## Multiple R-squared: 0.986, Adjusted R-squared: 0.9844 ## F-statistic: 632.9 on 2 and 18 DF, p-value: < 2.2e-16