19 Day 19 (June 29)

19.1 Announcements

  • Read Chs. 14, 15 and 16 in linear models with R

19.2 Regression and ANOVA

  • Review of the linear model
  • Regression, ANOVA, and t-test as special cases of the linear model
    • Write the regression and ANOVA model out on white board

19.3 T-test

  • Common statistical test taught in introductory statistics classes
    • Linear model representation

    • Example: comparing two means

      library(faraway)
      df.plant <- PlantGrowth[-c(1:10),]
      df.plant$group <- factor(df.plant$group) 
      
      boxplot(weight ~ group,df.plant,col="grey",ylim=c(0,7))

      aggregate(weight ~ group, FUN=mean,data=df.plant)
      ##   group weight
      ## 1  trt1  4.661
      ## 2  trt2  5.526
    • Use t.test() function in R.

      t.test(weight ~ group-1,data = df.plant,var.equal = TRUE)
      ## 
      ##  Two Sample t-test
      ## 
      ## data:  weight by group
      ## t = -3.0101, df = 18, p-value = 0.007518
      ## alternative hypothesis: true difference in means between group trt1 and group trt2 is not equal to 0
      ## 95 percent confidence interval:
      ##  -1.4687336 -0.2612664
      ## sample estimates:
      ## mean in group trt1 mean in group trt2 
      ##              4.661              5.526
    • Use lm() function in R.

      # With "intercept"
      m1 <- lm(weight ~ group,data = df.plant)
      summary(m1)
      ## 
      ## Call:
      ## lm(formula = weight ~ group, data = df.plant)
      ## 
      ## Residuals:
      ##     Min      1Q  Median      3Q     Max 
      ## -1.0710 -0.3573 -0.0910  0.2402  1.3690 
      ## 
      ## Coefficients:
      ##             Estimate Std. Error t value Pr(>|t|)    
      ## (Intercept)   4.6610     0.2032   22.94 8.93e-15 ***
      ## grouptrt2     0.8650     0.2874    3.01  0.00752 ** 
      ## ---
      ## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
      ## 
      ## Residual standard error: 0.6426 on 18 degrees of freedom
      ## Multiple R-squared:  0.3348, Adjusted R-squared:  0.2979 
      ## F-statistic: 9.061 on 1 and 18 DF,  p-value: 0.007518
      # Without "intercept"
      m2 <- lm(weight ~ group-1,data = df.plant)
      summary(m2)
      ## 
      ## Call:
      ## lm(formula = weight ~ group - 1, data = df.plant)
      ## 
      ## Residuals:
      ##     Min      1Q  Median      3Q     Max 
      ## -1.0710 -0.3573 -0.0910  0.2402  1.3690 
      ## 
      ## Coefficients:
      ##           Estimate Std. Error t value Pr(>|t|)    
      ## grouptrt1   4.6610     0.2032   22.94 8.93e-15 ***
      ## grouptrt2   5.5260     0.2032   27.20 4.52e-16 ***
      ## ---
      ## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
      ## 
      ## Residual standard error: 0.6426 on 18 degrees of freedom
      ## Multiple R-squared:  0.986,  Adjusted R-squared:  0.9844 
      ## F-statistic: 632.9 on 2 and 18 DF,  p-value: < 2.2e-16