23.2 operators \(O(\phi_0,\phi_1)\)
here we consider operators of the form \[ O_{001}=\phi_0 \phi_0 \phi_1\\ O_{011}=\phi_0 \phi_1 \phi_1\\ O_{111}=\phi_1 \phi_1 \phi_1\\ \]
and we add in order to the GEVP
we can construct the GEVP \[ \begin{pmatrix} \langle\tilde{\phi_0}(t)\tilde{\phi_0}(0) \rangle & \langle\tilde{\phi_0}(t)\tilde\phi_0^3(0) \rangle & \langle\tilde{\phi_0}(t)\tilde{\phi_1}(0) & \langle\tilde \phi_0(t)O_{001}(0) \rangle \rangle & \langle\tilde \phi_0(t)O_{011}(0) \rangle \rangle \\ & \langle\tilde{\phi_0}^3(t)\tilde{\phi_0}^3(0) \rangle & \langle\tilde{\phi_0}^3(t)\tilde{\phi_1}(0) \rangle &\langle\tilde{\phi_0}^3(t)O_{001}(0) \rangle &\langle\tilde{\phi_0}^3(t)O_{011}(0) \rangle\\ & & \langle\tilde{\phi_1}(t)\tilde{\phi_1}(0) \rangle & \langle\tilde{\phi_1}(t)O_{001}(0) \rangle & \langle\tilde{\phi_1}(t)O_{011}(0) \rangle\\ &&& \langle O_{001}(t) O_{001}(0)\rangle& \langle O_{001}(t) O_{011}(0)\rangle\\ &&& & \langle O_{011}(t) O_{011}(0)\rangle& ...\\ &&&&& \langle O_{111}(t) O_{111}(0)\rangle \end{pmatrix} \]
23.2.0.1 ../../g0.25/out/G2t_T64_L24_msq0-4.868000_msq1-4.710000_l02.500000_l12.500000_mu5.000000_g0.250000_rep0_output
GEVP_phi0_phi03_phi1_meffl0(L24T64) = 0.132949(60) \(\chi^2/dof=\) 0.016036
GEVP_phi0_phi03_phi1_meffl1(L24T64) = 0.426617(85) \(\chi^2/dof=\) 1.2008
GEVP_phi0_phi03_phi1_meffl2(L24T64) = 0.43759(42) \(\chi^2/dof=\) 192.02
GEVP_0_3_1_001_meffl0(L24T64) = 0.132948(59) \(\chi^2/dof=\) 0.015004
GEVP_0_3_1_001_meffl1(L24T64) = 0.41737(37) \(\chi^2/dof=\) 5.977
GEVP_0_3_1_001_meffl2(L24T64) = 0.426625(84) \(\chi^2/dof=\) 1.2153
GEVP_0_3_1_001_meffl3(L24T64) = 0.7347(13) \(\chi^2/dof=\) 9.3848
GEVP_0_3_1_001_011_meffl0(L24T64) = 0.132948(59) \(\chi^2/dof=\) 0.014627
GEVP_0_3_1_001_011_meffl1(L24T64) = 0.41636(37) \(\chi^2/dof=\) 1.6045
GEVP_0_3_1_001_011_meffl2(L24T64) = 0.426624(84) \(\chi^2/dof=\) 1.2211
GEVP_0_3_1_001_011_meffl3(L24T64) = 0.70323(99) \(\chi^2/dof=\) 0.33187
GEVP_0_3_1_001_011_meffl4(L24T64) = 1.0147(13) \(\chi^2/dof=\) 2.2343
GEVP_0_3_1_001_011_111_meffl0(L24T64) = 0.132948(59) \(\chi^2/dof=\) 0.014622
GEVP_0_3_1_001_011_111_meffl1(L24T64) = 0.41635(37) \(\chi^2/dof=\) 1.5497
GEVP_0_3_1_001_011_111_meffl2(L24T64) = 0.426624(84) \(\chi^2/dof=\) 1.2158
GEVP_0_3_1_001_011_111_meffl3(L24T64) = 0.70193(99) \(\chi^2/dof=\) 0.24717
GEVP_0_3_1_001_011_111_meffl4(L24T64) = 0.9891(13) \(\chi^2/dof=\) 1.1141
GEVP_0_3_1_001_l0(L24T64) = 1.30437(14) \(\chi^2/dof=\) inf
GEVP_0_3_1_001_l1(L24T64) = 2.3070(17) \(\chi^2/dof=\) inf
GEVP_0_3_1_001_l2(L24T64) = 2.34743(43) \(\chi^2/dof=\) inf
GEVP_0_3_1_001_l3(L24T64) = 4.338(11) \(\chi^2/dof=\) inf
23.2.1 GEVP_phi0_phi03_phi1_v
v0 | v1 | v2 |
---|---|---|
-0.5279(86) | -0.182(47) | -0.007032(23) |
0.8229(64) | 0.889(66) | 0.9999753(86) |
0.2103(35) | -0.42(11) | 0.000120(56) |
23.2.2 GEVP_0_3_1_001_v
v0 | v1 | v2 | v3 |
---|---|---|---|
0.42(27) | 0.0050(38) | -0.16(15) | -0.00146(95) |
-0.47(31) | -0.54(42) | -0.24(19) | 0.37(24) |
-0.17(11) | -0.0018(15) | -0.39(36) | -0.0021(14) |
0.70(46) | 0.82(64) | 0.86(66) | 0.89(57) |
23.2.3 GEVP_0_3_1_001_011_v
v0 | v1 | v2 | v3 | v4 |
---|---|---|---|---|
0.5(1.9) | 0.00560(21) | -0.195(78) | 0.00102(26) | -0.0009619(14) |
-0.5(2.3) | -0.604(25) | -0.23(15) | -0.358(91) | 0.13157(45) |
-0.18(76) | -0.00204(13) | -0.48(18) | 0.00230(59) | -0.0005068(24) |
0.6(2.3) | 0.720(29) | 0.74(11) | -0.55(14) | 0.63206(76) |
-0.4(1.6) | -0.324(13) | -0.35(12) | 0.75(19) | 0.76366(69) |
23.2.4 GEVP_0_3_1_001_011_111_v
v0 | v1 | v2 | v3 | v4 | v5 |
---|---|---|---|---|---|
0.5(1.8) | 0.00555(36) | -0.190(77) | 0.00118(87) | -0.0008936(29) | -0.0007308(17) |
-0.6(2.2) | -0.601(41) | -0.20(15) | -0.38(28) | 0.15822(64) | 0.04368(44) |
-0.18(72) | -0.00213(19) | -0.46(18) | 0.0028(21) | 0.000364(16) | -0.0017530(34) |
0.6(2.2) | 0.727(50) | 0.777(76) | -0.61(45) | 0.69158(79) | 0.3108(16) |
-0.4(1.4) | -0.293(20) | -0.11(16) | 0.68(50) | 0.6018(42) | 0.74116(72) |
0.03(12) | 0.0351(31) | 0.26(12) | -0.14(11) | -0.3665(63) | 0.5935(17) |