Book
1
Lagrangian
2
E1
2.1
dispersion relation
2.1.1
heavy mass
3
E2
3.1
Plot
3.1.1
residual plot
3.2
Weight shift
3.2.1
Residual plot Ws
3.3
Compare the two methods for E2
3.4
E2 CM
3.4.1
To plot the figure in pdf
3.5
E2 Plateaux scan
3.5.1
E2_0_p1
3.5.2
E2_0_p111
3.6
E2_01
4
E2 connected
4.0.1
FT
\(\phi^2\)
4.0.2
Test ensemble
5
E3
5.1
Plot
5.1.1
residual plot
5.2
vev of
\(\phi^2\)
5.2.1
residual plot
5.3
Compare E3 fit
5.3.1
plotting the exponential for A1
5.3.2
plotting the exponential for p=(1,0,0)
5.4
E3 CM
5.5
E3 Plateaux scan
5.5.1
E3_0_A1
6
Matrix element
6.1
time ordering 1
6.1.1
T48
6.1.2
T32
6.2
time ordering 2
6.2.1
Fittint the contribution 1,4,5
6.3
free theory , time ordering 1
7
test area
7.0.1
g=0 {g=0 plot_GEVP tmp}
8
report fit
\(m_0\)
9
fit
\(a_{00}\)
10
report fit phase shift
\(\delta\)
10.0.1
Lattice dispersion relation
10.1
2 parameter fit
10.1.1
Continuum
10.1.2
Latt
\(E-E^{free-latt}+E^{free-cont}\)
10.1.3
Latt
\(E_{CM}\)
with disp rel
10.1.4
to generate the pdf plot
11
Fit of the energy levels
11.1
P = (0,0,0), (1,0,0), (1,1,0)
11.2
P = (0,0,0), (1,0,0), (1,1,0) , (0,0,0)
11.3
P = (0,0,0), (1,0,0), (1,1,0) , (0,0,0) ,(1,1,1)
11.4
3 parameters fit
11.5
Lattice dispersion relation
12
Fit QC3
12.1
p=(0,0,0)
12.1.1
lattice dispersion relation
12.2
p=(1,0,0)
12.2.1
lattice dispersion relation
12.3
p=(1,1,0)
12.3.1
lattice dispersion relation p=(1,1,0)
12.4
p=(1-1,0,0)
12.4.1
latt disp rel
12.5
p=(1,1,1)
12.5.1
latt disp rel
12.6
tests
13
Polynomial fit E3
14
\(E_{\phi_1}\)
vs
\(E_{3\phi_0}\)
14.0.1
P=(0,0,0)
14.0.2
P=(1,0,0)
14.0.3
P=(1,1,0)
15
\(E_{\phi_1}\)
-
\(E_{3\phi_0}\)
16
\(m_0=-4.89\)
16.1
E1
16.2
Heavy mass
17
g=0.025
17.1
E1 (g=0.025)
17.1.1
light mass
17.1.2
heavy mass
17.2
E2 (g=0.025)
17.2.1
residual plot
17.3
E2 CM
\(g=0.025\)
17.4
E3 (g=0.025)
17.4.1
residual plot
18
GEVP g=0
18.1
current set GEVP g=0
18.2
old set
18.2.1
P=(0,0,0)
18.2.2
P=(1,0,0)
18.2.3
plotting the exponential
19
Fit 2 particle quantization (g=0.025)
20
Fit QC3 (g=0.025)
20.1
p=(0,0,0)
20.1.1
latt disp rel
20.2
p=(1,1,1)
20.2.1
latt disp rel
21
Smearing
21.1
Gaussian Smearing
21.2
Laplace smearing
22
GEVP g=0 m0=-4.9 m1=-4.68
22.1
GEVP P=(0,0,0)
22.2
GEVP P=(1,0,0) g0.25
23
g=0.25
23.1
derivative operator
23.2
operators
\(O(\phi_0,\phi_1)\)
23.3
Hankel
23.4
phi3 non local
23.5
GEVP
\(\phi_0\)
\(\phi_0^3\)
\(\phi_5^3\)
23.6
GEVP
\(\phi_0\)
\(\phi_0^3\)
23.7
GEVP
\(\phi_0^3\)
\(\phi_1\)
23.8
GEVP
\(\phi_0\)
\(\phi_1\)
23.9
\(m_0^2=-4.864\)
\(m_1^2=-4.71\)
23.10
\(m_0^2=-4.864\)
\(m_1^2=-4.705\)
23.11
all L
\(m_0^2=-4.868\)
\(m_1^2=-4.71\)
23.12
\(m_0^2=-4.868\)
\(m_1^2=-4.70\)
23.13
\(m_0^2=-4.868\)
\(m_1^2=-4.72\)
23.14
\(m_0^2=-4.9\)
\(m_1^2=-4.68\)
23.15
\(m_0^2=-4.868\)
\(m_1^2=-4.68\)
23.16
\(m_0^2=-4.868\)
\(m_1^2=-4.67\)
23.17
\(m_0^2=-4.868\)
\(m_1^2=-4.65\)
23.18
\(\lambda_0=5\)
23.19
neighbor interaction g
23.20
GEVP P=(1,0,0) g0.25
23.21
\(\lambda=0\)
\(m_0^2=0.0489\)
\(m_1^2=0.155\)
23.22
Test many GEVP
\(m_0^2=-4.864\)
\(m_1^2=-4.71\)
23.22.1
Two particle sector
23.22.2
Three particle sector
23.23
E2
\(m_0^2=-4.864\)
\(m_1^2=-4.71\)
23.24
E2
\(m_0^2=-4.864\)
\(m_1^2=-4.705\)
23.25
two particle g0.25
23.25.1
fit
\(a\)
from perturbative expansion
23.25.2
Luescher analysis
23.25.3
energy level fit g=0.25
24
Energy levels summary g0.25
25
GEVP g0.025
25.1
P=(1,0,0)
26
g=0.125
26.1
GEVP P=(0,0,0) g0.125
26.2
GEVP P=(1,0,0) g0.125
27
g=0.06
27.1
\(m_0^2=-4.895\)
\(m_1^2=-4.669\)
\(=g0.06\)
27.2
\(m_0^2=-4.892\)
\(m_1^2=-4.674\)
\(=g0.06\)
27.3
\(m_0^2=-4.894\)
\(m_1^2=-4.674\)
\(=g0.06\)
27.4
\(m_0^2=-4.895\)
\(m_1^2=-4.674\)
\(=g0.06\)
27.5
\(m_0^2=-4.895\)
\(m_1^2=-4.6745\)
\(g=0.06\)
27.6
\(m_0^2=-4.895\)
\(m_1^2=-4.675\)
\(=g0.06\)
27.7
\(m_0^2=-4.895\)
\(m_1^2=-4.677\)
\(=g0.06\)
28
g=0.1
28.1
GEVP P=(0,0,0) g0.1
28.2
GEVP P=(1,0,0) g0.1
28.2.1
diff masses 2-1
28.3
t0=10 GEVP {t0_10_GEVP_g01}
28.4
m0=-4.893 GEVP {m0_4_893_GEVP_g01}
28.5
t0=t+3 GEVP
28.6
t=3 t0 variable GEVP
28.7
Gevp 4x4
28.8
GEVP P=(1,1,0) g0.1
28.9
GEVP g0.1 m0sq=-4.895 P=(1,0,0)
28.10
fit two particle sector
28.11
E2 CM g0.1
28.12
P = (0,0,0), (1,0,0), (1,1,0) g=0.1
28.13
P = (0,0,0), (1,0,0), (1,1,0) , (0,0,0) g=0.1
28.14
Lattice dispersion relation g=0.1
28.15
Polynomial fit E3 and E1_1 g0.1
28.16
fit QC3 pole g=0.1
29
normalised GEVP (GEVPn)
29.0.1
GEVP
29.0.2
GEVPn
References
Published with bookdown
phi4-analysis
Chapter 24
Energy levels summary g0.25
24.0.0.1
ground state
24.0.0.2
E2
24.0.0.3
E3
nomilized with the mass