27.18 Polynomial fit E3 and E1_1 g0.1

χ2/d.o.f.=10.6252P[0]=4.89629±(0.36)P[1]=0.138883±(0.035)P[2]=0.00357814±(0.0011)P[3]=3.15971e05±(1.2e05)P[4]=3.16024±(0.21)P[5]=0.0537395±(0.02)P[6]=0.00143314±(0.00063)P[7]=1.29317e05±(6.6e06)P[8]=0.313394±(0.21)P[9]=0.514239±(0.02)P[10]=0.0177287±(0.00063)P[11]=0.000184938±(6.5e06)P[12]=16.1673±(0.24)P[13]=1.00876±(0.023)P[14]=0.0283746±(0.00071)P[15]=0.000268044±(7.3e06)P[16]=11.2919±(0.29)P[17]=0.549572±(0.028)P[18]=0.0154641±(0.00091)P[19]=0.000154239±(9.5e06)P[20]=9.06663±(0.28)P[21]=0.166146±(0.026)P[22]=0.000353564±(0.00082)P[23]=3.77141e05±(8.4e06) {C=(0.130.9990.9970.9940.05960.05250.04480.03510.2310.2170.20.180.06890.06360.05960.05840.09760.0930.0880.08070.006990.01890.02720.03120.9990.001230.9990.9980.07430.06590.05720.04650.240.2240.2050.1830.05520.05070.04750.0470.1070.1010.0950.08680.01830.02890.03620.03940.9970.9991.25e060.9990.08880.07950.06980.05830.2490.2320.2120.1880.04160.03790.03530.03550.1170.110.1030.09420.03030.03970.0460.04850.9940.9980.9991.37e100.1030.09250.08210.070.2580.240.2190.1940.02870.02560.02370.02440.1270.1190.1120.1020.04230.05060.05620.05790.05960.07430.08880.1030.0440.9990.9950.9890.6940.6720.6480.6230.7470.7450.7410.7360.7370.7150.6930.6710.4470.4660.4830.4980.05250.06590.07950.09250.9990.0004050.9990.9950.6920.6730.6520.630.7460.7450.7430.740.7520.7320.7120.6920.4440.4640.4830.50.04480.05720.06980.08210.9950.9994.03e070.9990.6880.6720.6530.6340.7430.7450.7450.7430.7630.7450.7260.7080.4350.4580.4780.4960.03510.04650.05830.070.9890.9950.9994.33e110.6820.6690.6530.6360.7380.7420.7440.7440.770.7540.7370.720.4240.4480.470.490.2310.240.2490.2580.6940.6920.6880.6820.04320.9980.9910.980.4760.4790.4790.4760.6270.6140.60.5850.4060.4210.4320.440.2170.2240.2320.240.6720.6730.6720.6690.9980.0003970.9980.9910.4570.4630.4650.4640.6310.6210.6090.5970.4060.4220.4350.4440.20.2050.2120.2190.6480.6520.6530.6530.9910.9983.94e070.9980.4370.4460.450.4510.630.6230.6140.6030.40.4180.4320.4430.180.1830.1880.1940.6230.630.6340.6360.980.9910.9984.21e110.4190.430.4360.4390.6250.620.6130.6050.3910.4110.4260.4380.06890.05520.04160.02870.7470.7460.7430.7380.4760.4570.4370.4190.05610.9990.9950.9890.7220.7060.690.6730.4650.4850.5030.5180.06360.05070.03790.02560.7450.7450.7450.7420.4790.4630.4460.430.9990.0005140.9990.9950.7360.7220.7080.6920.4560.4770.4970.5140.05960.04750.03530.02370.7410.7430.7450.7440.4790.4650.450.4360.9950.9995.07e070.9990.7460.7330.720.7060.440.4630.4850.5030.05840.0470.03550.02440.7360.740.7430.7440.4760.4640.4510.4390.9890.9950.9995.4e110.7520.740.7290.7160.4220.4470.4690.4890.09760.1070.1170.1270.7370.7520.7630.770.6270.6310.630.6250.7220.7360.7460.7520.08510.9990.9950.990.6140.6390.660.6770.0930.1010.110.1190.7150.7320.7450.7540.6140.6210.6230.620.7060.7220.7330.740.9990.0008070.9990.9960.6060.6330.6540.6720.0880.0950.1030.1120.6930.7120.7260.7370.60.6090.6140.6130.690.7080.720.7290.9950.9998.2e070.9990.5970.6250.6470.6660.08070.08680.09420.1020.6710.6920.7080.720.5850.5970.6030.6050.6730.6920.7060.7160.990.9960.9998.95e110.5880.6160.640.6590.006990.01830.03030.04230.4470.4440.4350.4240.4060.4060.40.3910.4650.4560.440.4220.6140.6060.5970.5880.07640.9980.9920.9840.01890.02890.03970.05060.4660.4640.4580.4480.4210.4220.4180.4110.4850.4770.4630.4470.6390.6330.6250.6160.9980.0006860.9980.9940.02720.03620.0460.05620.4830.4830.4780.470.4320.4350.4320.4260.5030.4970.4850.4690.660.6540.6470.640.9920.9986.68e070.9990.03120.03940.04850.05790.4980.50.4960.490.440.4440.4430.4380.5180.5140.5030.4890.6770.6720.6660.6590.9840.9940.9997.02e11)}

2530354033.544.555.5
as.factor(df[, 6])momuntum(0,0,0)(1,0,0)(1,1,0)L$E_3/m$