2.1 dispersion relation

Here we compare the dispersion relation of the continuum \[ E(p)^2=m^2+\vec p^2 \] where \(p_i=2\pi n_i/L\), with the one on the lattice

\[ \cosh E(p)= \cosh E(0) + \frac{1}{2}\sum_{i=1}^{3} 4 \sin^2 \frac{p_i}{2}\,. \] In terms of parameters of the lagrangian the dispersion relation looks like

\[ \cosh E(p)= 1 +\frac{m}{2}+ \frac{1}{2}\sum_{i=1}^{3} 4 \sin^2 \frac{p_i}{2}\,. \] so \(E(0)\) is related to the parameter of the lagrangian \(m\) as

\[ \cosh E(0)= 1+\frac{m}{2} \]

2.1.0.1 ../out/G2t_T48_L30_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.000000_rep0_output

2.1.1 heavy mass

2.1.1.1 ../out/G2t_T32_L28_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.000000_rep0_output

E1_1(L28T32) = 0.44685(18) \(\chi^2/dof=\) 0.22457