27.19 fit QC3 pole g=0.1

minimizing the \(\chi^2\) \[ \chi^2 =\sum_i \frac{(E_3^{predicted} -E_3^{measured} )}{\sigma^2} \] the predicted energy is the solution of the three particles quantization condition in the isotropic approximation \[ F_3^{iso}(E,\vec P,L)=-1/K^{iso}_3(E^*)\, \] \(F_3\) depend on the result of the two particle phase shift \(\delta\) computed before and we parametrise \(K_3^{iso}\) as

\[ K_3^{iso}= \frac{P[0]}{E_{cm}^2-P[1]} \] where \(P[1]\) represent the mass of the resonance \(P[1]=M_R^2\)

\[\begin{gather} \chi^2/d.o.f.=0.575448 \\ P[0]=-22533.5\pm (1.3e+03) \\ P[1]=80.5154\pm (0.71) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1.77e+06& 0.85\\ 0.85& 0.507\\ \end{pmatrix} \end{gather}\]}