27.19 fit QC3 pole g=0.1

minimizing the χ2 χ2=i(Epredicted3Emeasured3)σ2 the predicted energy is the solution of the three particles quantization condition in the isotropic approximation Fiso3(E,P,L)=1/Kiso3(E) F3 depend on the result of the two particle phase shift δ computed before and we parametrise Kiso3 as

Kiso3=P[0]E2cmP[1] where P[1] represent the mass of the resonance P[1]=M2R

χ2/d.o.f.=0.575448P[0]=22533.5±(1.3e+03)P[1]=80.5154±(0.71) {C=(1.77e+060.850.850.507)}

253035403.043.063.083.13.123.143.163.183.23.22
as.factor(df[, 6])momuntum(0,0,0)L$E_3/m$