23.1 derivative operator

an other possibility will be to take derivatives of the correlator 2t˜ϕ(t)˜ϕ(0) in this case however we do not know how to define a GEVP.

Defining the derivative operator +˜ϕ(t)=˜ϕ(t+1)˜ϕ(t) we can construct the GEVP (~ϕ0(t)~ϕ0(0)~ϕ0(t)˜ϕ30(0)~ϕ0(t)~ϕ1(0)˜ϕ0(t)()˜ϕ0(0)~ϕ03(t)~ϕ03(0)~ϕ03(t)~ϕ1(0)~ϕ03(t)()~ϕ0(0)~ϕ1(t)~ϕ1(0)~ϕ1(t)()~ϕ0(0)+~ϕ0(t)()~ϕ0(0)) notice that +~ϕ0(t)()~ϕ0(0)=~ϕ0(t+1)~ϕ0(1)~ϕ0(t+1)~ϕ0(0)~ϕ0(t)~ϕ0(1)~ϕ0(t)~ϕ0(0)=c(t+2)2c(t+1)+c(t) does not really help in the GEVP

23.1.0.1 ../../g0.25/out/G2t_T64_L24_msq0-4.868000_msq1-4.710000_l02.500000_l12.500000_mu5.000000_g0.250000_rep0_output

GEVP_phi0_phi03_phi1_meffl0(L24T64) = 0.132949(60) χ2/dof= 0.016036

GEVP_phi0_phi03_phi1_meffl1(L24T64) = 0.426617(85) χ2/dof= 1.2008

GEVP_phi0_phi03_phi1_meffl2(L24T64) = 0.43759(42) χ2/dof= 192.02

GEVP_0_3_1_d0_meffl0(L24T64) = 1 χ2/dof= -nan

GEVP_0_3_1_d0_meffl1(L24T64) = 0.133004(56) χ2/dof= 0.094397

GEVP_0_3_1_d0_meffl2(L24T64) = 0.42666(13) χ2/dof= 0.28956

GEVP_0_3_1_d0_meffl3(L24T64) = 0.44173(38) χ2/dof= 88.047

d0d0_meff(L24T64) = 0.17705(33) χ2/dof= 123.37

0102030−0.500.511.522.53
mylabelGEVP_phi0_phi03_phi1_meffl0(L24T64)GEVP_phi0_phi03_phi1_meffl1(L24T64)GEVP_phi0_phi03_phi1_meffl2(L24T64)GEVP_0_3_1_d0_meffl0(L24T64)GEVP_0_3_1_d0_meffl1(L24T64)GEVP_0_3_1_d0_meffl2(L24T64)GEVP_0_3_1_d0_meffl3(L24T64)d0d0_meff(L24T64)meff GEVP L24T64ty