23.1 derivative operator
an other possibility will be to take derivatives of the correlator ∇2t⟨˜ϕ(t)˜ϕ(0)⟩ in this case however we do not know how to define a GEVP.
Defining the derivative operator ∇+˜ϕ(t)=˜ϕ(t+1)−˜ϕ(t) we can construct the GEVP (⟨~ϕ0(t)~ϕ0(0)⟩⟨~ϕ0(t)˜ϕ30(0)⟩⟨~ϕ0(t)~ϕ1(0)⟨˜ϕ0(t)(−∇−)˜ϕ0(0)⟩⟩⟨~ϕ03(t)~ϕ03(0)⟩⟨~ϕ03(t)~ϕ1(0)⟩⟨~ϕ03(t)(−∇−)~ϕ0(0)⟩⟨~ϕ1(t)~ϕ1(0)⟩⟨~ϕ1(t)(−∇−)~ϕ0(0)⟩⟨∇+~ϕ0(t)(−∇−)~ϕ0(0)⟩) notice that ⟨∇+~ϕ0(t)(−∇−)~ϕ0(0)⟩=⟨~ϕ0(t+1)~ϕ0(−1)⟩−⟨~ϕ0(t+1)~ϕ0(0)−⟨~ϕ0(t)~ϕ0(−1)⟩−⟨~ϕ0(t)~ϕ0(0)⟩=c(t+2)−2c(t+1)+c(t) does not really help in the GEVP
23.1.0.1 ../../g0.25/out/G2t_T64_L24_msq0-4.868000_msq1-4.710000_l02.500000_l12.500000_mu5.000000_g0.250000_rep0_output
GEVP_phi0_phi03_phi1_meffl0(L24T64) = 0.132949(60) χ2/dof= 0.016036
GEVP_phi0_phi03_phi1_meffl1(L24T64) = 0.426617(85) χ2/dof= 1.2008
GEVP_phi0_phi03_phi1_meffl2(L24T64) = 0.43759(42) χ2/dof= 192.02
GEVP_0_3_1_d0_meffl0(L24T64) = 1 χ2/dof= -nan
GEVP_0_3_1_d0_meffl1(L24T64) = 0.133004(56) χ2/dof= 0.094397
GEVP_0_3_1_d0_meffl2(L24T64) = 0.42666(13) χ2/dof= 0.28956
GEVP_0_3_1_d0_meffl3(L24T64) = 0.44173(38) χ2/dof= 88.047
d0d0_meff(L24T64) = 0.17705(33) χ2/dof= 123.37