Chapter 10 report fit phase shift δ
The phase shif can be computed from the formula
cotδ=Z00(1,q2)π3/2γq where γ=E/ECM, q=kL/2π with k the scattering momentum k2=E2CM4−m2=E2−→P24−m2. The Energy in the center of mass is related to the one in a generic frame with toal momentum →P via E2CM=E2−→P2. For the Z function we use the rzeta package. The fit function for the phase shift is kcotδ=1a+r0k22−Pr30k4
T | L | kcot(δ) | err | k | q2 |
---|---|---|---|---|---|
32 | 24 | -1.08593 | 1.84135e-02 | 0.0306013 | 0.013662888 |
32 | 28 | -1.03311 | 4.09708e-02 | 0.0247557 | 0.012170453 |
32 | 30 | -1.09773 | 5.20706e-02 | 0.0215197 | 0.010557357 |
32 | 32 | -1.08661 | 5.88078e-02 | 0.0195871 | 0.009951316 |
32 | 36 | -1.12134 | 1.08256e-01 | 0.0160638 | 0.008471140 |
32 | 24 | -1.80346 | 1.00101e-01 | 0.1072370 | 0.167784585 |
32 | 28 | -1.50407 | 5.11882e-02 | 0.0954119 | 0.180784592 |
32 | 30 | -1.77873 | 1.24245e-01 | 0.0896310 | 0.183146767 |
32 | 32 | -1.59680 | 1.24582e-01 | 0.0853352 | 0.188884639 |
32 | 36 | -1.38922 | 9.23453e-02 | 0.0777009 | 0.198197131 |
32 | 24 | -4.60620 | 1.55925e+00 | 0.1317890 | 0.253408438 |
32 | 28 | -112.19000 | 4.90134e+03 | 0.1173090 | 0.273287011 |
32 | 30 | -5.52459 | 3.15745e+00 | 0.1124440 | 0.288240728 |
32 | 32 | -2.45020 | 5.07289e-01 | 0.1081130 | 0.303176865 |
32 | 36 | -2.15729 | 5.14408e-01 | 0.0991795 | 0.322915650 |
32 | 24 | -3.76511 | 1.47172e-01 | 0.2645580 | 1.021185276 |
32 | 28 | -2.79984 | 1.37815e-01 | 0.2271230 | 1.024421201 |
32 | 30 | -2.37259 | 8.48897e-02 | 0.2122380 | 1.026902147 |
32 | 32 | -2.39690 | 1.03216e-01 | 0.1987850 | 1.024961235 |
32 | 36 | -2.05591 | 1.07701e-01 | 0.1767760 | 1.025868914 |
32 | 24 | -56.57610 | 6.31984e+02 | 0.1488430 | 0.323235890 |
32 | 28 | -6.99573 | 2.15198e+01 | 0.1349640 | 0.361736397 |
32 | 30 | 35.66020 | 3.57882e+02 | 0.1282370 | 0.374894848 |
32 | 32 | 15.36720 | 6.20218e+01 | 0.1226830 | 0.390399268 |
32 | 36 | 6.61338 | 8.66737e+00 | 0.1129190 | 0.418580808 |
χ2/d.o.f.=313.097P[0]=8.01648e+11±(3.7e+10)P[1]=4.81083±(0.0093)P[2]=9.60444±(0.056) {C=(1.36e+21−0.333−0.333−0.3338.59e−051−0.33310.00308)}
10.0.1 Lattice dispersion relation
We correct the energy with
E2=Emeasured2−Efree−latt2+Efree−cont2 with Efree−latt2 defined in (??)
T | L | kcot(δ) | err | k | q2 |
---|---|---|---|---|---|
32 | 24 | -1.085930 | 0.0184135 | 0.0306013 | 0.013662888 |
32 | 28 | -1.033110 | 0.0409708 | 0.0247557 | 0.012170453 |
32 | 30 | -1.097730 | 0.0520706 | 0.0215197 | 0.010557357 |
32 | 32 | -1.086610 | 0.0588078 | 0.0195871 | 0.009951316 |
32 | 36 | -1.121340 | 0.1082560 | 0.0160638 | 0.008471140 |
32 | 24 | -1.352870 | 0.0545292 | 0.1072370 | 0.167784585 |
32 | 28 | -1.188310 | 0.0311852 | 0.0954119 | 0.180784592 |
32 | 30 | -1.351540 | 0.0697130 | 0.0896310 | 0.183146767 |
32 | 32 | -1.247710 | 0.0743168 | 0.0853352 | 0.188884639 |
32 | 36 | -1.120780 | 0.0588649 | 0.0777009 | 0.198197131 |
32 | 24 | -1.372560 | 0.1374780 | 0.1317890 | 0.253408438 |
32 | 28 | -2.000900 | 0.3896670 | 0.1173090 | 0.273287011 |
32 | 30 | -1.504980 | 0.2263330 | 0.1124440 | 0.288240728 |
32 | 32 | -1.123700 | 0.1067700 | 0.1081130 | 0.303176865 |
32 | 36 | -1.063960 | 0.1293490 | 0.0991795 | 0.322915650 |
32 | 24 | -2.252280 | 0.0532213 | 0.2645580 | 1.021185276 |
32 | 28 | -1.919640 | 0.0650388 | 0.2271230 | 1.024421201 |
32 | 30 | -1.723870 | 0.0449533 | 0.2122380 | 1.026902147 |
32 | 32 | -1.750520 | 0.0552633 | 0.1987850 | 1.024961235 |
32 | 36 | -1.577160 | 0.0634087 | 0.1767760 | 1.025868914 |
32 | 24 | -1.037000 | 0.1695280 | 0.1488430 | 0.323235890 |
32 | 28 | -0.945481 | 0.2374770 | 0.1349640 | 0.361736397 |
32 | 30 | -1.168270 | 0.4128580 | 0.1282370 | 0.374894848 |
32 | 32 | -1.247460 | 0.4082810 | 0.1226830 | 0.390399268 |
32 | 36 | -1.464220 | 0.4252110 | 0.1129190 | 0.418580808 |
χ2/d.o.f.=407.394P[0]=9.31691e+11±(3e+10)P[1]=4.05769±(0.0065)P[2]=9.48081±(0.045) {C=(8.92e+20−0.272−0.272−0.2724.19e−051−0.27210.00206)}