Chapter 10 report fit phase shift \(\delta\)

The phase shif can be computed from the formula

\[ \cot{ \delta}=\frac{Z_{00}(1,q^2)}{\pi^{3/2}\gamma q} \] where \(\gamma=E/E_{CM}\), \(q=kL/2\pi\) with \(k\) the scattering momentum \[ k^2=\frac{E_{CM}^2}{4}-m^2 = \frac{E^2-\vec{P}^2}{4}-m^2. \] The Energy in the center of mass is related to the one in a generic frame with toal momentum \(\vec{P}\) via \[ E_{CM}^2=E^2-\vec{P}^2\,. \] For the \(Z\) function we use the rzeta package. The fit function for the phase shift is \[ k \cot{ \delta}=\frac{1}{a}+\frac{r_0 k^2}{2}-Pr_0^3 k^4 \]

\(T\) \(L\) \(k \cot(\delta)\) err \(k\) \(q^2\)
32 24 -1.08593 1.84135e-02 0.0306013 0.013662888
32 28 -1.03311 4.09708e-02 0.0247557 0.012170453
32 30 -1.09773 5.20706e-02 0.0215197 0.010557357
32 32 -1.08661 5.88078e-02 0.0195871 0.009951316
32 36 -1.12134 1.08256e-01 0.0160638 0.008471140
32 24 -1.80346 1.00101e-01 0.1072370 0.167784585
32 28 -1.50407 5.11882e-02 0.0954119 0.180784592
32 30 -1.77873 1.24245e-01 0.0896310 0.183146767
32 32 -1.59680 1.24582e-01 0.0853352 0.188884639
32 36 -1.38922 9.23453e-02 0.0777009 0.198197131
32 24 -4.60620 1.55925e+00 0.1317890 0.253408438
32 28 -112.19000 4.90134e+03 0.1173090 0.273287011
32 30 -5.52459 3.15745e+00 0.1124440 0.288240728
32 32 -2.45020 5.07289e-01 0.1081130 0.303176865
32 36 -2.15729 5.14408e-01 0.0991795 0.322915650
32 24 -3.76511 1.47172e-01 0.2645580 1.021185276
32 28 -2.79984 1.37815e-01 0.2271230 1.024421201
32 30 -2.37259 8.48897e-02 0.2122380 1.026902147
32 32 -2.39690 1.03216e-01 0.1987850 1.024961235
32 36 -2.05591 1.07701e-01 0.1767760 1.025868914
32 24 -56.57610 6.31984e+02 0.1488430 0.323235890
32 28 -6.99573 2.15198e+01 0.1349640 0.361736397
32 30 35.66020 3.57882e+02 0.1282370 0.374894848
32 32 15.36720 6.20218e+01 0.1226830 0.390399268
32 36 6.61338 8.66737e+00 0.1129190 0.418580808

\[\begin{gather} \chi^2/d.o.f.=313.097 \\ P[0]=8.01648e+11\pm (3.7e+10) \\ P[1]=4.81083\pm (0.0093) \\ P[2]=9.60444\pm (0.056) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1.36e+21& -0.333& -0.333\\ -0.333& 8.59e-05& 1\\ -0.333& 1& 0.00308\\ \end{pmatrix} \end{gather}\]}

10.0.1 Lattice dispersion relation

We correct the energy with

\[ E_2=E_2^{measured}-E_2^{free-latt}+E_2^{free-cont} \] with \(E_2^{free-latt}\) defined in (??)

\(T\) \(L\) \(k \cot(\delta)\) err \(k\) \(q^2\)
32 24 -1.085930 0.0184135 0.0306013 0.013662888
32 28 -1.033110 0.0409708 0.0247557 0.012170453
32 30 -1.097730 0.0520706 0.0215197 0.010557357
32 32 -1.086610 0.0588078 0.0195871 0.009951316
32 36 -1.121340 0.1082560 0.0160638 0.008471140
32 24 -1.352870 0.0545292 0.1072370 0.167784585
32 28 -1.188310 0.0311852 0.0954119 0.180784592
32 30 -1.351540 0.0697130 0.0896310 0.183146767
32 32 -1.247710 0.0743168 0.0853352 0.188884639
32 36 -1.120780 0.0588649 0.0777009 0.198197131
32 24 -1.372560 0.1374780 0.1317890 0.253408438
32 28 -2.000900 0.3896670 0.1173090 0.273287011
32 30 -1.504980 0.2263330 0.1124440 0.288240728
32 32 -1.123700 0.1067700 0.1081130 0.303176865
32 36 -1.063960 0.1293490 0.0991795 0.322915650
32 24 -2.252280 0.0532213 0.2645580 1.021185276
32 28 -1.919640 0.0650388 0.2271230 1.024421201
32 30 -1.723870 0.0449533 0.2122380 1.026902147
32 32 -1.750520 0.0552633 0.1987850 1.024961235
32 36 -1.577160 0.0634087 0.1767760 1.025868914
32 24 -1.037000 0.1695280 0.1488430 0.323235890
32 28 -0.945481 0.2374770 0.1349640 0.361736397
32 30 -1.168270 0.4128580 0.1282370 0.374894848
32 32 -1.247460 0.4082810 0.1226830 0.390399268
32 36 -1.464220 0.4252110 0.1129190 0.418580808

\[\begin{gather} \chi^2/d.o.f.=407.394 \\ P[0]=9.31691e+11\pm (3e+10) \\ P[1]=4.05769\pm (0.0065) \\ P[2]=9.48081\pm (0.045) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 8.92e+20& -0.272& -0.272\\ -0.272& 4.19e-05& 1\\ -0.272& 1& 0.00206\\ \end{pmatrix} \end{gather}\]}