3.2 Weight shift
Here we compute the two particle energy with a different procedure. Starting from the correlator
⟨O2pxO†2px(t)⟩=|A0→2|2(e−E2pt+e−E2p(T−t))+|Aϕ(0)→ϕ(p)|2(e−ωpT−mt+ωpt+e−mT−ωpt+mt)=|A0→2|2e−E2pT2cosh(E2p(t−T2))+|Aϕ(0)→ϕ(p)|2e−(ωp+m)T2cosh((ωp−m)(t−T2)) We divide the correlator by the exponential of the termal pollution term cw(t)=c(t)e−(ωp+m)T2cosh((ωp−m)(t−T2)) then we do a shift of the correlator cws(t)=cw(t+1)−cw(t) in this way we eliminate the dependence over |Aϕ(0)→ϕ(p)|2 and we fit the two parameters E2 and A0→2 cws(t)=|A0→2|2{e−E2pT2cosh(E2p(t+1−T2))e−(ωp+m)T2cosh((ωp−m)(t+1−T2))−e−E2pT2cosh(E2p(t−T2))e−(ωp+m)T2cosh((ωp−m)(t−T2))}
3.2.0.1 ../out/G2t_T48_L30_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.000000_rep0_output
E2_0(L30T48) = 0.26043(14) χ2/dof= 0.25211
E2_0_p1_ws(L30T48) = 0.37667(26) 0.00143477(33) χ2/dof= 0.29432
E2_0_p11_ws(L30T48) = 0.45288(44) 0.00125112(40) χ2/dof= 0.76591
E2_0_p111_ws(L30T48) = 0.51327(70) 0.00114417(42) χ2/dof= 0.72888
E2_0_A1(L30T48) = 0.49564(16) χ2/dof= 2.5133
3.2.0.2 ../out/G2t_T96_L30_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.000000_rep0_output
E2_0(L30T96) = 0.26036(10) χ2/dof= 0.12577
E2_0_p1_ws(L30T96) = 0.37628(26) 0.00143292(32) χ2/dof= 0.30754
E2_0_p11_ws(L30T96) = 0.45140(46) 0.00124898(44) χ2/dof= 0.78333
E2_0_p111_ws(L30T96) = 0.51210(75) -0.00114271(39) χ2/dof= 0.19456
E2_0_A1(L30T96) = 0.49594(11) χ2/dof= 2.8021