22.1 Gaussian Smearing

Following (Montvay and Urbach 2012) we can define the smeared field S(t,x)=yi:|xi,yi|<Rϕ(t,y)eρi|xi,yi|2

with |x,y|=min. The projected smeared field to zero momentum \tilde S(t,P=0)=\sum_{x_i}\sum_{y_i:|x_i,y_i|<R} \phi(t,y) e^{-\rho \sum_i |x_i,y_i| }=\sum_{\vec x}\sum_{|\vec\mu|<R} \phi(t,\vec x+\vec\mu) e^{-\rho | \vec \mu| }\\ = \sum_{|\vec\mu|<R}\sum_{\vec x} \phi(t, \vec x+\vec\mu) e^{-\rho | \vec \mu| } = \sum_{|\vec\mu|<R} \tilde\phi(t, p=0) e^{-\rho | \vec \mu| }\\ =\tilde\phi(t, p=0) \sum_{|\vec\mu|<R} e^{-\rho | \vec \mu| } where we introduce the vector \vec\mu=| x , y | and we use the fact that \sum_{\vec x} \phi(t,\vec x +\vec \mu)=\sum_{\vec x} \phi(t,\vec x ).

Thus we have that correlation function of the smeared field at zero momentum are proportional to the correlation function of the non-smeared field

\langle \tilde S(t,P=0)\tilde S(0,P=0)\rangle =N \langle \tilde \phi(t,P=0)\tilde \phi(0,P=0)\rangle Below we compare the effective mass of the correlators

  • \langle \tilde \phi(t,P=0)\tilde \phi(0,P=0)\rangle with label E1_0
  • \langle \tilde S(t,P=0)\tilde S(0,P=0)\rangle with label sE1_0

in a L4T16 lattice

22.1.0.1 ../../g0.025/out/G2t_T64_L28_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.025000_rep0_output

E1_0(L28T64) = 0.127807(50) \chi^2/dof= 0.81852

sE1_0(L28T64) = 0.127807(50) \chi^2/dof= 0.81852

051015202530−3−2−1012345
mylabelE1_0(L28T64)sE1_0(L28T64)fitty

E1_0_p1(L28T64) = 0.257235(17) \chi^2/dof= 7.2542

sE1_0_p1(L28T64) = 0.257235(17) \chi^2/dof= 7.2542

051015202530−1−0.500.511.522.53
mylabelE1_0_p1(L28T64)sE1_0_p1(L28T64)fitty

22.1.0.2 ../../momentum/out/G2t_T128_L24_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.000000_rep0_output

GEVP_phi0_phi03_phi1_p1_meffl0(L24T128) = 0.290220(31) \chi^2/dof= 1.6069

GEVP_phi0_phi03_phi1_p1_meffl1(L24T128) = 0.515128(60) \chi^2/dof= 0.61451

GEVP_phi0_phi03_phi1_p1_meffl2(L24T128) = 0.56689(19) \chi^2/dof= 1.1024

E1_0_p1(L24T128) = 0.290237(13) \chi^2/dof= 4.9672

E1_1_px(L24T128) = 0.515041(44) \chi^2/dof= 0.8219

sE1_0_p1(L24T128) = 0.290237(13) \chi^2/dof= 4.9672

0102030405060−4−20246
mylabelGEVP_phi0_phi03_phi1_p1_meffl0(L24T128)GEVP_phi0_phi03_phi1_p1_meffl1(L24T128)GEVP_phi0_phi03_phi1_p1_meffl2(L24T128)E1_0_p1(L24T128)E1_1_px(L24T128)sE1_0_p1(L24T128)fitty

22.1.0.3 ../../momentum/out/G2t_T128_L24_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.000000_rep0_output

E2_0(L24T128) = 0.264920(85) \chi^2/dof= 4.6562

sE2_0(L24T128) = 0.264911(85) \chi^2/dof= 3.7711

E2_0_p0(L24T128) = 1.3060(19) \chi^2/dof= 1572.8

0102030405060−2−101234
mylabelE2_0(L24T128)sE2_0(L24T128)E2_0_p0(L24T128)fitty

References

Montvay, I., and C. Urbach. 2012. “Exploratory Investigation of Nucleon-Nucleon Interactions Using Euclidean Monte Carlo Simulations.” The European Physical Journal A 48 (3). https://doi.org/10.1140/epja/i2012-12038-1.