10.1 2 parameter fit
10.1.1 Continuum
\[\begin{gather} \chi^2/d.o.f.=2.75551 \\ P[0]=-0.928181\pm (0.012) \\ P[1]=-68.7347\pm (1.5) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 0.000135& 0.0703\\ 0.0703& 2.33\\ \end{pmatrix} \end{gather}\]}
10.1.2 Latt \(E-E^{free-latt}+E^{free-cont}\)
\[\begin{gather} \chi^2/d.o.f.=1.40686 \\ P[0]=-0.93717\pm (0.012) \\ P[1]=-32.544\pm (0.85) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 0.000149& 0.479\\ 0.479& 0.726\\ \end{pmatrix} \end{gather}\]}
10.1.3 Latt \(E_{CM}\) with disp rel
\[\begin{gather} \chi^2/d.o.f.=4.40224 \\ P[0]=-0.999886\pm (0.013) \\ P[1]=-62.8422\pm (1.6) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 0.000167& 0.0893\\ 0.0893& 2.41\\ \end{pmatrix} \end{gather}\]}
10.1.4 to generate the pdf plot
continuum disp
\[\begin{gather} \chi^2/d.o.f.=3.8733 \\ P[0]=-4.58478\pm (0.073) \\ P[1]=-0.220197\pm (0.0052) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 0.00531& 0.229\\ 0.229& 2.71e-05\\ \end{pmatrix} \end{gather}\]}
lattice disp
\[\begin{gather} \chi^2/d.o.f.=1.32136 \\ P[0]=-4.79208\pm (0.075) \\ P[1]=-0.105474\pm (0.0031) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 0.00567& 0.615\\ 0.615& 9.81e-06\\ \end{pmatrix} \end{gather}\]}
#> png
#> 2
#> png
#> 2
\(T\) | \(L\) | \(\bf p\) | \(k/M(dE)\) | \(k \cot(\delta)(dE)\) | \(k/M\) | \(k \cot(\delta)\) |
---|---|---|---|---|---|---|
32 | 24 | (0,0,0) | 0.236697 | -0.839(13) | 0.236697 | -0.839(13) |
32 | 28 | (0,0,0) | 0.192419 | -0.758(31) | 0.192419 | -0.758(31) |
32 | 30 | (0,0,0) | 0.167482 | -0.659(36) | 0.167482 | -0.659(36) |
32 | 32 | (0,0,0) | 0.152493 | -0.618(40) | 0.152493 | -0.618(40) |
32 | 36 | (0,0,0) | 0.125359 | -0.515(62) | 0.125359 | -0.515(62) |
32 | 24 | (1,0,0) | 0.829466 | -1.266(12) | 0.829466 | -1.168(21) |
32 | 28 | (1,0,0) | 0.741610 | -1.2685(79) | 0.741610 | -1.191(12) |
32 | 30 | (1,0,0) | 0.697574 | -1.209(18) | 0.697574 | -1.105(29) |
32 | 32 | (1,0,0) | 0.664370 | -1.219(20) | 0.664370 | -1.128(31) |
32 | 36 | (1,0,0) | 0.606361 | -1.223(17) | 0.606361 | -1.146(26) |
32 | 24 | (1,1,0) | 1.019370 | -1.319(25) | 1.019370 | -0.85(17) |
32 | 28 | (1,1,0) | 0.911813 | -1.170(72) | 0.911813 | -0.04(47) |
32 | 30 | (1,1,0) | 0.875121 | -1.249(46) | 0.875121 | -0.68(27) |
32 | 32 | (1,1,0) | 0.841702 | -1.317(24) | 0.841702 | -1.050(90) |
32 | 36 | (1,1,0) | 0.773975 | -1.308(31) | 0.773975 | -1.07(10) |
32 | 24 | (1-1,0,0) | 2.046330 | -1.3598(49) | 2.046330 | -1.225(13) |
32 | 28 | (1-1,0,0) | 1.765370 | -1.3610(70) | 1.765370 | -1.268(14) |
32 | 30 | (1-1,0,0) | 1.651790 | -1.3688(52) | 1.651790 | -1.2949(95) |
32 | 32 | (1-1,0,0) | 1.547630 | -1.3523(68) | 1.547630 | -1.274(12) |
32 | 36 | (1-1,0,0) | 1.379520 | -1.3494(88) | 1.379520 | -1.284(14) |
32 | 24 | (1,1,1) | 1.151280 | -1.402(28) | 1.151280 | -0.10(85) |
32 | 28 | (1,1,1) | 1.049040 | -1.400(43) | 1.049040 | -0.65(82) |
32 | 30 | (1,1,1) | 0.998036 | -1.349(77) | 0.998036 | 0.1(1.1) |
32 | 32 | (1,1,1) | 0.955142 | -1.323(79) | 0.955142 | 0.31(98) |
32 | 36 | (1,1,1) | 0.881194 | -1.258(86) | 0.881194 | 0.59(53) |