Chapter 23 g=0.25
we can construct the operator F(∇2ϕ(t,→x))|p=0
∇2ϕ(t,→x)=∑μϕ(x+μ)−2ϕ(x)+ϕ(x−μ)F(∇2ϕ(t,→x))|p=0=∑→x∑μϕ(x+μ)−2ϕ(x)+ϕ(x−μ)=∑→x∑→μϕ(t+μ0,→x+→μ)−2ϕ(t,→x)+ϕ(t−μ0,→x−→μ)=˜ϕ(t+1)−2˜ϕ(t)+˜ϕ(t−1) and the correlator
⟨F(∇2ϕ(t))|p=0F(∇2ϕ(0))|p=0⟩=⟨˜ϕ(t)˜ϕ(0)⟩−2⟨˜ϕ(t+1)˜ϕ(0)⟩+⟨˜ϕ(t+2)˜ϕ(0)⟩−2⟨˜ϕ(t−1)˜ϕ(0)⟩+4⟨˜ϕ(t)˜ϕ(0)⟩−2⟨˜ϕ(t+1)˜ϕ(0)⟩+⟨˜ϕ(t−2)˜ϕ(0)⟩−2⟨˜ϕ(t−1)˜ϕ(0)⟩+⟨˜ϕ(t)˜ϕ(0)⟩=6⟨˜ϕ(t)˜ϕ(0)⟩−4⟨˜ϕ(t+1)˜ϕ(0)⟩+⟨˜ϕ(t+2)˜ϕ(0)⟩−4⟨˜ϕ(t−1)˜ϕ(0)⟩+⟨˜ϕ(t−2)˜ϕ(0)⟩
and construct the GEVP
(⟨~ϕ0(t)~ϕ0(0)⟩⟨~ϕ0(t)F(∇2ϕ0(0))⟩⟨~ϕ0(t)~ϕ1(0)⟩⟨F(∇2ϕ0(t))F(∇2ϕ0(0))⟨F(∇2ϕ0(t))~ϕ1(t)⟩⟩⟨~ϕ0(t)~ϕ0(0)⟩)