Chapter 23 g=0.25

we can construct the operator F(2ϕ(t,x))|p=0

2ϕ(t,x)=μϕ(x+μ)2ϕ(x)+ϕ(xμ)F(2ϕ(t,x))|p=0=xμϕ(x+μ)2ϕ(x)+ϕ(xμ)=xμϕ(t+μ0,x+μ)2ϕ(t,x)+ϕ(tμ0,xμ)=˜ϕ(t+1)2˜ϕ(t)+˜ϕ(t1) and the correlator

F(2ϕ(t))|p=0F(2ϕ(0))|p=0=˜ϕ(t)˜ϕ(0)2˜ϕ(t+1)˜ϕ(0)+˜ϕ(t+2)˜ϕ(0)2˜ϕ(t1)˜ϕ(0)+4˜ϕ(t)˜ϕ(0)2˜ϕ(t+1)˜ϕ(0)+˜ϕ(t2)˜ϕ(0)2˜ϕ(t1)˜ϕ(0)+˜ϕ(t)˜ϕ(0)=6˜ϕ(t)˜ϕ(0)4˜ϕ(t+1)˜ϕ(0)+˜ϕ(t+2)˜ϕ(0)4˜ϕ(t1)˜ϕ(0)+˜ϕ(t2)˜ϕ(0)

and construct the GEVP

(~ϕ0(t)~ϕ0(0)~ϕ0(t)F(2ϕ0(0))~ϕ0(t)~ϕ1(0)F(2ϕ0(t))F(2ϕ0(0))F(2ϕ0(t))~ϕ1(t)~ϕ0(t)~ϕ0(0))