11.5 Lattice dispersion relation
given the parametrization
kmcotδ=1am+r0k22m, with P[0]=am , P[1]=r0m , P[2]=P2. We solve the quantization condition finding the value of k such that cotδ=Z00(1,q2)π3/2γq.
From k we compute the two particle energy E2
k2=E2CM4−m2=E2−→P24−m2.
and finally the energy shift ΔEpredicted2=E2−√4m2+p21−√4m2+p22
On the other hand we measure the two particle energy and we compute the energy shift with the lattice dispersion relation ΔElatt2=Emeasured2−Efree−latt2 Efree−latt2=cosh−1(cosh(m)+12(2∑i=14sin(p1i2)2))+cosh−1(cosh(m)+12(2∑i=14sin(p2i2)2)).
Finally we minimise the χ2 χ2=∑i(ΔEpredicted2−ΔElatt2)2σ2
χ2/d.o.f.=0.912112P[0]=−0.120481±(0.0015)P[1]=−4.24382±(0.13) {C=(2.19e−060.4970.4970.0159)}
V1 | V2 | V3 | V4 | V5 | V6 | V7 |
---|---|---|---|---|---|---|
24 | 2.05526 | 0.0010315 | 32 | 0.0306013 | (0,0,0) | 0.236697 |
28 | 2.03669 | 0.0015889 | 32 | 0.0247557 | (0,0,0) | 0.192419 |
30 | 2.02786 | 0.0014532 | 32 | 0.0215197 | (0,0,0) | 0.167482 |
32 | 2.02312 | 0.0013810 | 32 | 0.0195871 | (0,0,0) | 0.152493 |
36 | 2.01565 | 0.0015958 | 32 | 0.0160638 | (0,0,0) | 0.125359 |
24 | 3.30710 | 0.0026425 | 32 | 0.1072370 | (1,0,0) | 0.829466 |
28 | 3.04846 | 0.0011070 | 32 | 0.0954119 | (1,0,0) | 0.741610 |
30 | 2.94009 | 0.0020888 | 32 | 0.0896310 | (1,0,0) | 0.697574 |
32 | 2.85229 | 0.0022296 | 32 | 0.0853352 | (1,0,0) | 0.664370 |
36 | 2.71088 | 0.0017537 | 32 | 0.0777009 | (1,0,0) | 0.606361 |
24 | 4.07090 | 0.0039228 | 32 | 0.1317890 | (1,1,0) | 1.019370 |
28 | 3.67927 | 0.0042767 | 32 | 0.1173090 | (1,1,0) | 0.911813 |
30 | 3.53246 | 0.0035146 | 32 | 0.1124440 | (1,1,0) | 0.875121 |
32 | 3.40429 | 0.0024913 | 32 | 0.1081130 | (1,1,0) | 0.841702 |
36 | 3.18781 | 0.0024844 | 32 | 0.0991795 | (1,1,0) | 0.773975 |
24 | 4.58073 | 0.0022710 | 32 | 0.2645580 | (1-1,0,0) | 2.046330 |
28 | 4.07458 | 0.0029542 | 32 | 0.2271230 | (1-1,0,0) | 1.765370 |
30 | 3.87570 | 0.0031294 | 32 | 0.2122380 | (1-1,0,0) | 1.651790 |
32 | 3.69684 | 0.0024715 | 32 | 0.1987850 | (1-1,0,0) | 1.547630 |
36 | 3.41622 | 0.0027037 | 32 | 0.1767760 | (1-1,0,0) | 1.379520 |
24 | 4.69010 | 0.0070158 | 32 | 0.1488430 | (1,1,1) | 1.151280 |
28 | 4.21421 | 0.0078635 | 32 | 0.1349640 | (1,1,1) | 1.049040 |
30 | 4.01712 | 0.0073082 | 32 | 0.1282370 | (1,1,1) | 0.998036 |
32 | 3.84782 | 0.0047845 | 32 | 0.1226830 | (1,1,1) | 0.955142 |
36 | 3.57350 | 0.0035345 | 32 | 0.1129190 | (1,1,1) | 0.881194 |
the resulting δ determined is