11.5 Lattice dispersion relation

given the parametrization

\[ \frac{k}{m} \cot{ \delta}=\frac{1}{am}+\frac{r_0 k^2}{2m}\,, \] with \(P[0]=am\) , \(P[1]=r_0 m\) , \(P[2]=P_2\). We solve the quantization condition finding the value of \(k\) such that \[ \cot{ \delta}=\frac{Z_{00}(1,q^2)}{\pi^{3/2}\gamma q}. \]

From k we compute the two particle energy \(E_2\)

\[ k^2=\frac{E_{CM}^2}{4}-m^2 = \frac{E^2-\vec{P}^2}{4}-m^2. \]

and finally the energy shift \[ \Delta E_2^{predicted} = E_2 - \sqrt{4m^2 + p_1^2}-\sqrt{4m^2 + p_2^2} \]

On the other hand we measure the two particle energy and we compute the energy shift with the lattice dispersion relation \[ \Delta E_2^{latt}=E_2^{measured}-E_2^{free-latt} \] \[\begin{gather} E_2^{free-latt} = \cosh^{-1}{\left( \cosh(m) +\frac{1}{2}\left( \sum_{i=1}^{2}4 \sin\left(\frac{ p_{1i}}{2}\right)^2\right)\right)} \\ + \cosh^{-1}{\left( \cosh(m) +\frac{1}{2}\left( \sum_{i=1}^{2}4 \sin\left(\frac{ p_{2i}}{2}\right)^2\right)\right)} \,. \tag{11.1} \end{gather}\]

Finally we minimise the \(\chi^2\) \[ \chi^2= \sum_i \frac{( \Delta E_2^{predicted} -\Delta E_2^{latt})^2}{\sigma^2} \]

\[\begin{gather} \chi^2/d.o.f.=0.912112 \\ P[0]=-0.120481\pm (0.0015) \\ P[1]=-4.24382\pm (0.13) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 2.19e-06& 0.497\\ 0.497& 0.0159\\ \end{pmatrix} \end{gather}\]}

V1 V2 V3 V4 V5 V6 V7
24 2.05526 0.0010315 32 0.0306013 (0,0,0) 0.236697
28 2.03669 0.0015889 32 0.0247557 (0,0,0) 0.192419
30 2.02786 0.0014532 32 0.0215197 (0,0,0) 0.167482
32 2.02312 0.0013810 32 0.0195871 (0,0,0) 0.152493
36 2.01565 0.0015958 32 0.0160638 (0,0,0) 0.125359
24 3.30710 0.0026425 32 0.1072370 (1,0,0) 0.829466
28 3.04846 0.0011070 32 0.0954119 (1,0,0) 0.741610
30 2.94009 0.0020888 32 0.0896310 (1,0,0) 0.697574
32 2.85229 0.0022296 32 0.0853352 (1,0,0) 0.664370
36 2.71088 0.0017537 32 0.0777009 (1,0,0) 0.606361
24 4.07090 0.0039228 32 0.1317890 (1,1,0) 1.019370
28 3.67927 0.0042767 32 0.1173090 (1,1,0) 0.911813
30 3.53246 0.0035146 32 0.1124440 (1,1,0) 0.875121
32 3.40429 0.0024913 32 0.1081130 (1,1,0) 0.841702
36 3.18781 0.0024844 32 0.0991795 (1,1,0) 0.773975
24 4.58073 0.0022710 32 0.2645580 (1-1,0,0) 2.046330
28 4.07458 0.0029542 32 0.2271230 (1-1,0,0) 1.765370
30 3.87570 0.0031294 32 0.2122380 (1-1,0,0) 1.651790
32 3.69684 0.0024715 32 0.1987850 (1-1,0,0) 1.547630
36 3.41622 0.0027037 32 0.1767760 (1-1,0,0) 1.379520
24 4.69010 0.0070158 32 0.1488430 (1,1,1) 1.151280
28 4.21421 0.0078635 32 0.1349640 (1,1,1) 1.049040
30 4.01712 0.0073082 32 0.1282370 (1,1,1) 0.998036
32 3.84782 0.0047845 32 0.1226830 (1,1,1) 0.955142
36 3.57350 0.0035345 32 0.1129190 (1,1,1) 0.881194
png 2

the resulting \(\delta\) determined is