11.5 Lattice dispersion relation
given the parametrization
\[ \frac{k}{m} \cot{ \delta}=\frac{1}{am}+\frac{r_0 k^2}{2m}\,, \] with \(P[0]=am\) , \(P[1]=r_0 m\) , \(P[2]=P_2\). We solve the quantization condition finding the value of \(k\) such that \[ \cot{ \delta}=\frac{Z_{00}(1,q^2)}{\pi^{3/2}\gamma q}. \]
From k we compute the two particle energy \(E_2\)
\[ k^2=\frac{E_{CM}^2}{4}-m^2 = \frac{E^2-\vec{P}^2}{4}-m^2. \]
and finally the energy shift \[ \Delta E_2^{predicted} = E_2 - \sqrt{4m^2 + p_1^2}-\sqrt{4m^2 + p_2^2} \]
On the other hand we measure the two particle energy and we compute the energy shift with the lattice dispersion relation \[ \Delta E_2^{latt}=E_2^{measured}-E_2^{free-latt} \] \[\begin{gather} E_2^{free-latt} = \cosh^{-1}{\left( \cosh(m) +\frac{1}{2}\left( \sum_{i=1}^{2}4 \sin\left(\frac{ p_{1i}}{2}\right)^2\right)\right)} \\ + \cosh^{-1}{\left( \cosh(m) +\frac{1}{2}\left( \sum_{i=1}^{2}4 \sin\left(\frac{ p_{2i}}{2}\right)^2\right)\right)} \,. \tag{11.1} \end{gather}\]
Finally we minimise the \(\chi^2\) \[ \chi^2= \sum_i \frac{( \Delta E_2^{predicted} -\Delta E_2^{latt})^2}{\sigma^2} \]
\[\begin{gather} \chi^2/d.o.f.=0.912112 \\ P[0]=-0.120481\pm (0.0015) \\ P[1]=-4.24382\pm (0.13) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 2.19e-06& 0.497\\ 0.497& 0.0159\\ \end{pmatrix} \end{gather}\]}
V1 | V2 | V3 | V4 | V5 | V6 | V7 |
---|---|---|---|---|---|---|
24 | 2.05526 | 0.0010315 | 32 | 0.0306013 | (0,0,0) | 0.236697 |
28 | 2.03669 | 0.0015889 | 32 | 0.0247557 | (0,0,0) | 0.192419 |
30 | 2.02786 | 0.0014532 | 32 | 0.0215197 | (0,0,0) | 0.167482 |
32 | 2.02312 | 0.0013810 | 32 | 0.0195871 | (0,0,0) | 0.152493 |
36 | 2.01565 | 0.0015958 | 32 | 0.0160638 | (0,0,0) | 0.125359 |
24 | 3.30710 | 0.0026425 | 32 | 0.1072370 | (1,0,0) | 0.829466 |
28 | 3.04846 | 0.0011070 | 32 | 0.0954119 | (1,0,0) | 0.741610 |
30 | 2.94009 | 0.0020888 | 32 | 0.0896310 | (1,0,0) | 0.697574 |
32 | 2.85229 | 0.0022296 | 32 | 0.0853352 | (1,0,0) | 0.664370 |
36 | 2.71088 | 0.0017537 | 32 | 0.0777009 | (1,0,0) | 0.606361 |
24 | 4.07090 | 0.0039228 | 32 | 0.1317890 | (1,1,0) | 1.019370 |
28 | 3.67927 | 0.0042767 | 32 | 0.1173090 | (1,1,0) | 0.911813 |
30 | 3.53246 | 0.0035146 | 32 | 0.1124440 | (1,1,0) | 0.875121 |
32 | 3.40429 | 0.0024913 | 32 | 0.1081130 | (1,1,0) | 0.841702 |
36 | 3.18781 | 0.0024844 | 32 | 0.0991795 | (1,1,0) | 0.773975 |
24 | 4.58073 | 0.0022710 | 32 | 0.2645580 | (1-1,0,0) | 2.046330 |
28 | 4.07458 | 0.0029542 | 32 | 0.2271230 | (1-1,0,0) | 1.765370 |
30 | 3.87570 | 0.0031294 | 32 | 0.2122380 | (1-1,0,0) | 1.651790 |
32 | 3.69684 | 0.0024715 | 32 | 0.1987850 | (1-1,0,0) | 1.547630 |
36 | 3.41622 | 0.0027037 | 32 | 0.1767760 | (1-1,0,0) | 1.379520 |
24 | 4.69010 | 0.0070158 | 32 | 0.1488430 | (1,1,1) | 1.151280 |
28 | 4.21421 | 0.0078635 | 32 | 0.1349640 | (1,1,1) | 1.049040 |
30 | 4.01712 | 0.0073082 | 32 | 0.1282370 | (1,1,1) | 0.998036 |
32 | 3.84782 | 0.0047845 | 32 | 0.1226830 | (1,1,1) | 0.955142 |
36 | 3.57350 | 0.0035345 | 32 | 0.1129190 | (1,1,1) | 0.881194 |
the resulting \(\delta\) determined is