Chapter 12 Fit QC3
minimizing the \(\chi^2\) \[ \chi^2 =\sum_i \frac{(E_3^{predicted} -E_3^{measured} )}{\sigma^2} \] the predicted energy is the solution of the three particles quantization condition in the isotropic approximation \[ F_3^{iso}(E,\vec P,L)=-1/K^{iso}_3(E^*)\, \] \(F_3\) depend on the result of the two particle phase shift \(\delta\) computed before and \(K_3^{iso}\) is parametrised as
\[ K_3^{iso}= K^0_3+ \Delta K^1_3 \] with \(\Delta=(E_{cm}^2 -9 m^2)\)
\(T\) | \(L\) | \(E_3/m\) | err |
---|---|---|---|
32 | 24 | 3.18188 | 0.01900420 |
32 | 28 | 3.11606 | 0.01504940 |
32 | 30 | 3.08234 | 0.00984515 |
32 | 32 | 3.06695 | 0.02354710 |
32 | 36 | 3.03299 | 0.00928475 |