19.2 old set

19.2.1 P=(0,0,0)

19.2.1.1 ../../momentum/out/G2t_T128_L24_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.000000_rep0_output

GEVP_phi0_phi03_phi1_meffl0(L24T128) = 0.129046(40) \(\chi^2/dof=\) 0.026755

GEVP_phi0_phi03_phi1_meffl1(L24T128) = 0.40693(27) \(\chi^2/dof=\) 0.58826

GEVP_phi0_phi03_phi1_meffl2(L24T128) = 0.446792(68) \(\chi^2/dof=\) 0.95693

E1_0(L24T128) = 0.129057(40) \(\chi^2/dof=\) 0.047287

E1_1(L24T128) = 0.446791(68) \(\chi^2/dof=\) 0.96327

E3_0_vev(L24T128) = 0.40752(82) 0.00048373(72) 0.26(27) 0.0005905(66) \(\chi^2/dof=\) 0.0026487

19.2.2 P=(1,0,0)

19.2.2.1 ../../momentum/out/G2t_T128_L24_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.000000_rep0_output

GEVP_phi0_phi03_phi1_p1_meffl0(L24T128) = 0.290220(31) \(\chi^2/dof=\) 1.6069

GEVP_phi0_phi03_phi1_p1_meffl1(L24T128) = 0.515128(60) \(\chi^2/dof=\) 0.61451

GEVP_phi0_phi03_phi1_p1_meffl2(L24T128) = 0.56689(19) \(\chi^2/dof=\) 1.1024

E1_0_p1(L24T128) = 0.290237(13) \(\chi^2/dof=\) 4.9672

E1_1_p1(L24T128) = 0.515041(44) \(\chi^2/dof=\) 0.8219

E3_0_p1_vev(L24T128) = 0.5713(13) 0.00018486(53) 0.381(73) 50(22) 0.9(0.2)e-4 \(\chi^2/dof=\) 0.01676

E3_0_p1_meff(L24T128) = 0.440918(53) \(\chi^2/dof=\) 37945

19.2.2.2 ../../momentum/out/G2t_T256_L24_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.000000_rep0_output

GEVP_phi0_phi03_phi1_p1_meffl0(L24T256) = 0.29002(33) \(\chi^2/dof=\) 0.29721

GEVP_phi0_phi03_phi1_p1_meffl1(L24T256) = 0.4724(11) \(\chi^2/dof=\) 184.03

GEVP_phi0_phi03_phi1_p1_meffl2(L24T256) = 0.51572(51) \(\chi^2/dof=\) 1.3818

E1_0_p1(L24T256) = 0.29023(19) \(\chi^2/dof=\) 0.57503

E1_1_px(L24T256) = 0.51572(51) \(\chi^2/dof=\) 1.3828

E3_0_p1_vev(L24T256) = 0.5711(67) 0.0001847(13) 1588(149) -3.1(1.5)e+9 8.8(1.0)e-5 \(\chi^2/dof=\) 0.0028509

E2_0(L24T256) = 0.26551(85) \(\chi^2/dof=\) 0.91054

E2_0_p1(L24T256) = 0.4264(16) 0.0018022(22) -879(971) \(\chi^2/dof=\) 0.015153

E1_0(L24T256) = 0.12967(35) \(\chi^2/dof=\) 0.20384

E3_0_p1_meff(L24T256) = 0.43477(93) \(\chi^2/dof=\) 290.71

#> <div id="htmlwidget-b2551f2f9d7bcd218b79" style="width:900px;height:480px;" class="plotly html-widget"></div>
#> <script type="application/json" data-for="htmlwidget-b2551f2f9d7bcd218b79">{"x":{"data":[{"visible":false,"showlegend":false,"xaxis":null,"yaxis":null,"hoverinfo":"text","frame":null}],"layout":{"margin":{"t":29.6986301369863,"r":7.30593607305936,"b":17.351598173516,"l":10.958904109589},"plot_bgcolor":"rgba(235,235,235,1)","paper_bgcolor":"rgba(255,255,255,1)","font":{"color":"rgba(0,0,0,1)","family":"","size":14.6118721461187},"xaxis":{"domain":[0,1],"automargin":true,"type":"linear","autorange":true,"range":[],"tickmode":"auto","ticktext":[],"tickvals":[],"categoryorder":"array","categoryarray":[],"nticks":null,"ticks":"outside","tickcolor":"rgba(51,51,51,1)","ticklen":3.65296803652968,"tickwidth":0.66417600664176,"showticklabels":true,"tickfont":{"color":"rgba(77,77,77,1)","family":"","size":11.689497716895},"tickangle":-0,"showline":false,"linecolor":null,"linewidth":0,"showgrid":true,"gridcolor":"rgba(255,255,255,1)","gridwidth":0.66417600664176,"zeroline":false,"anchor":"y","title":"t","hoverformat":".2f","showexponent":"all","exponentformat":"e"},"yaxis":{"domain":[0,1],"automargin":true,"type":"linear","autorange":true,"range":[],"tickmode":"auto","ticktext":[],"tickvals":[],"categoryorder":"array","categoryarray":[],"nticks":null,"ticks":"outside","tickcolor":"rgba(51,51,51,1)","ticklen":3.65296803652968,"tickwidth":0.66417600664176,"showticklabels":true,"tickfont":{"color":"rgba(77,77,77,1)","family":"","size":11.689497716895},"tickangle":-0,"showline":false,"linecolor":null,"linewidth":0,"showgrid":true,"gridcolor":"rgba(255,255,255,1)","gridwidth":0.66417600664176,"zeroline":false,"anchor":"x","title":"y","hoverformat":".2f","showexponent":"all","exponentformat":"e"},"shapes":[{"type":"rect","fillcolor":null,"line":{"color":null,"width":0,"linetype":[]},"yref":"paper","xref":"paper","x0":0,"x1":1,"y0":0,"y1":1}],"showlegend":false,"legend":{"bgcolor":"rgba(255,255,255,1)","bordercolor":"transparent","borderwidth":1.88976377952756,"font":{"color":"rgba(0,0,0,1)","family":"","size":11.689497716895}},"hovermode":"closest","width":900,"height":480,"barmode":"relative","title":"fit"},"config":{"doubleClick":"reset","modeBarButtonsToAdd":["hoverclosest","hovercompare"],"showSendToCloud":false},"source":"A","attrs":{"4bc734b64e3":{"type":"scatter"}},"cur_data":"4bc734b64e3","visdat":{"4bc734b64e3":["function (y) ","x"]},"highlight":{"on":"plotly_click","persistent":false,"dynamic":false,"selectize":false,"opacityDim":0.2,"selected":{"opacity":1},"debounce":0},"shinyEvents":["plotly_hover","plotly_click","plotly_selected","plotly_relayout","plotly_brushed","plotly_brushing","plotly_clickannotation","plotly_doubleclick","plotly_deselect","plotly_afterplot","plotly_sunburstclick"],"base_url":"https://plot.ly"},"evals":[],"jsHooks":[]}</script>

19.2.3 plotting the exponential

\[ |A_{0-\phi_1}|^2 \left( e^{-E_{\phi_1}t}+e^{-E_{\phi_1}(T-t)}\right) +|A_{0-\phi_0}|^2 \left( e^{-E_{\phi_0}t}+e^{-E_{\phi_0}(T-t)}\right)\\ +|A_{0-3\phi_0}|^2 \left( e^{-E_{3\phi_0}t}+e^{-E_{3\phi_0}(T-t)}\right)\\ +|A_{\phi_0-2\phi_0(p)}|^2 e^{-E_{\phi_0}T} \left( e^{-(E_{2\phi_0}(p)-E_{\phi_0})t}+e^{-(E_{2\phi_0}(p)-E_{\phi_0})(T-t)}\right)\\ +|A_{\phi_0(p)-2\phi_0}|^2 e^{-E_{\phi_0}(p)T} \left( e^{-(E_{2\phi_0}-E_{\phi_0}(p))t}+e^{-(E_{2\phi_0}-E_{\phi_0}(p))(T-t)}\right)\,. \]

library(ggplot2)
library(Rose)
T<-256
t<-c(1:100)*48/100
E1_0= 0.12967
E1_0_p1= 0.29023
E1_1_p1=0.51572
E2_0=0.26551
E2_0_p1=0.4264

e1<-log10( exp(-E1_1_p1*t)+exp(-E1_1_p1*(T-t)))
e2<-log10( exp(-E1_0_p1*t)+exp(-E1_0_p1*(T-t)))
e3<-log10( (exp(-(E2_0_p1-E1_0)*t)+exp(-(E2_0_p1-E1_0)*(T-t)) ) *exp(-E1_0*T))
e4<-log10( (exp(-(E2_0-E1_0_p1)*t)+exp(-(E2_0-E1_0_p1)*(T-t)) ) *exp(-E1_0_p1*T))

gg<-ggplot()
gg<- gg+ geom_line(aes(x=t, y=e1, color="e1"))
gg<- gg+ geom_line(aes(x=t, y=e2, color="e2"))
gg<- gg+ geom_line(aes(x=t, y=e3, color="e3"))
gg<- gg+ geom_line(aes(x=t, y=e4, color="e4"))

gg<- gg+ geom_line(aes(x=(corr_E3_0_p1[,1]),
                       y=log10(corr_E3_0_p1[,2]), color="corr_E3"))

myplotly(gg, to_print = FALSE, xrange=c(0,48))