Chapter 4 E2 connected

We define the generator of the correlation function as Z[J0,J1]=NDϕ0Dϕ1eS+J0ϕ0+J1ϕ1. with N=1/Z[0,0] such that Z[0,0]=1. the correlation function acting with derivativesrespect to J and then setting it to zero, for example ϕ0(x)2ϕ0(y)2=22J0(x)22J0(y)Z[J0,J1]|J0=J1=0. We can define the connected correlation function deriving logarithm of Z i.e. ϕ0(x)2ϕ0(y)2c=22J0(x)22J0(y)logZ[J0,J1]|J0=J1=0=ϕ0(x)2ϕ0(y)2ϕ0(x)ϕ0(y)2ϕ0(x)2ϕ0(y)2 we use the fact that ϕ(x)=0.

Below we plot the effective mass computed from

  • ϕ0(x)2ϕ0(y)2
  • ϕ0(x)2ϕ0(y)2ϕ0(x)ϕ0(y)2
  • ϕ0(x)ϕ0(y)2

In all cases we remove the constant ϕ0(x)2 term shifting the correlator.

4.0.0.1 ../out/G2t_T32_L24_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.000000_rep0_output

E2_0(L24T32) = 0.26571(17) χ2/dof= 0.45542

E2_0_con(L24T32) = 0.27326(28) χ2/dof= 0.17525

E1_0_sq(L24T32) = 0.25850(10) χ2/dof= 1.0445

E1_0(L24T32) = 0.129285(59) χ2/dof= 0.039038

510150.150.20.250.30.350.40.450.5
mylabelE2_0(L24T32)E2_0_con(L24T32)E1_0_sq(L24T32)fitt$m_{eff}$

4.0.1 FT ϕ2

Below we add to the plot the FT of the operator ϕ(x)2 difined as

~ϕ(t,p)2=xϕ(t,x)2eipx we call its effective mass E2_0_p0

4.0.1.1 ../../g0.025/out/G2t_T64_L28_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.025000_rep0_output

E2_0(L28T64) = 0.26027(12) χ2/dof= 1.1137

E2_0_con(L28T64) = 0.26479(21) χ2/dof= 0.45586

E1_0_sq(L28T64) = 0.255803(69) χ2/dof= 2.0787

E2_0_p0(L28T64) = 1.3590(23) χ2/dof= 824.81

E1_0(L28T64) = 0.127807(50) χ2/dof= 0.81852

010203000.511.52
mylabelE2_0(L28T64)E2_0_con(L28T64)E1_0_sq(L28T64)E2_0_p0(L28T64)fitt$m_{eff}$

4.0.2 Test ensemble