Chapter 4 E2 connected
We define the generator of the correlation function as Z[J0,J1]=N∫Dϕ0Dϕ1e−S+∫J0ϕ0+∫J1ϕ1. with N=1/Z[0,0] such that Z[0,0]=1. the correlation function acting with derivativesrespect to J and then setting it to zero, for example ⟨ϕ0(x)2ϕ0(y)2⟩=∂2∂2J0(x)∂2∂2J0(y)Z[J0,J1]|J0=J1=0. We can define the connected correlation function deriving logarithm of Z i.e. ⟨ϕ0(x)2ϕ0(y)2⟩c=∂2∂2J0(x)∂2∂2J0(y)logZ[J0,J1]|J0=J1=0=⟨ϕ0(x)2ϕ0(y)2⟩−⟨ϕ0(x)ϕ0(y)⟩2−⟨ϕ0(x)2⟩⟨ϕ0(y)2⟩ we use the fact that ⟨ϕ(x)⟩=0.
Below we plot the effective mass computed from
- ⟨ϕ0(x)2ϕ0(y)2⟩
- ⟨ϕ0(x)2ϕ0(y)2⟩−⟨ϕ0(x)ϕ0(y)⟩2
- ⟨ϕ0(x)ϕ0(y)⟩2
In all cases we remove the constant ⟨ϕ0(x)2⟩ term shifting the correlator.
4.0.0.1 ../out/G2t_T32_L24_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.000000_rep0_output
E2_0(L24T32) = 0.26571(17) χ2/dof= 0.45542
E2_0_con(L24T32) = 0.27326(28) χ2/dof= 0.17525
E1_0_sq(L24T32) = 0.25850(10) χ2/dof= 1.0445
E1_0(L24T32) = 0.129285(59) χ2/dof= 0.039038
4.0.1 FT ϕ2
Below we add to the plot the FT of the operator ϕ(x)2 difined as
~ϕ(t,p)2=∑→xϕ(t,→x)2ei→p⋅→x we call its effective mass E2_0_p0
4.0.1.1 ../../g0.025/out/G2t_T64_L28_msq0-4.900000_msq1-4.650000_l02.500000_l12.500000_mu5.000000_g0.025000_rep0_output
E2_0(L28T64) = 0.26027(12) χ2/dof= 1.1137
E2_0_con(L28T64) = 0.26479(21) χ2/dof= 0.45586
E1_0_sq(L28T64) = 0.255803(69) χ2/dof= 2.0787
E2_0_p0(L28T64) = 1.3590(23) χ2/dof= 824.81
E1_0(L28T64) = 0.127807(50) χ2/dof= 0.81852