27.17 Lattice dispersion relation g=0.1

given the parametrization

kmcotδ=1am+r0k22m, with P[0]=am , P[1]=r0m , P[2]=P2. We solve the quantization condition finding the value of k such that cotδ=Z00(1,q2)π3/2γq.

From k we compute the two particle energy E2

k2=E2CM4m2=E2P24m2.

and finally the energy shift ΔEpredicted2=E24m2+p214m2+p22

On the other hand we measure the two particle energy and we compute the energy shift with the lattice dispersion relation ΔElatt2=Emeasured2Efreelatt2 Efreelatt2=cosh1(cosh(m)+12(2i=14sin(p1i2)2))+cosh1(cosh(m)+12(2i=14sin(p2i2)2)).

Finally we minimise the χ2 χ2=i(ΔEpredicted2ΔElatt2)2σ2

χ2/d.o.f.=0.912112P[0]=0.120481±(0.0015)P[1]=4.24382±(0.13) {C=(2.19e060.4970.4970.0159)}

png 2
2530354022.533.544.55
momentum(0,0,0)(1-1,0,0)(1,0,0)(1,1,0)(1,1,1)fitL$E_2- E_{free}^{lat}+E_{free}^{cont}/m$

the resulting δ determined is

00.511.522.5−0.16−0.14−0.12−0.1−0.08−0.06−0.04−0.020
$k/M_0$$\delta$