27.17 Lattice dispersion relation g=0.1
given the parametrization
kmcotδ=1am+r0k22m, with P[0]=am , P[1]=r0m , P[2]=P2. We solve the quantization condition finding the value of k such that cotδ=Z00(1,q2)π3/2γq.
From k we compute the two particle energy E2
k2=E2CM4−m2=E2−→P24−m2.
and finally the energy shift ΔEpredicted2=E2−√4m2+p21−√4m2+p22
On the other hand we measure the two particle energy and we compute the energy shift with the lattice dispersion relation ΔElatt2=Emeasured2−Efree−latt2 Efree−latt2=cosh−1(cosh(m)+12(2∑i=14sin(p1i2)2))+cosh−1(cosh(m)+12(2∑i=14sin(p2i2)2)).
Finally we minimise the χ2 χ2=∑i(ΔEpredicted2−ΔElatt2)2σ2
χ2/d.o.f.=0.912112P[0]=−0.120481±(0.0015)P[1]=−4.24382±(0.13) {C=(2.19e−060.4970.4970.0159)}
png 2the resulting δ determined is