References

Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and interpretation of computer programs (2nd ed.). Retrieved from https://mitpress.mit.edu/sites/default/files/sicp/
Allaire, J., Xie, Y., Dervieux, C., McPherson, J., Luraschi, J., Ushey, K., … Iannone, R. (2023). rmarkdown: Dynamic documents for R. Retrieved from https://github.com/rstudio/rmarkdown
Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17–21. https://doi.org/10.2307/2682899
Bache, S. M., & Wickham, H. (2022). magrittr: A forward-pipe operator for R. Retrieved from https://magrittr.tidyverse.org
Barrett, T., Dowle, M., Srinivasan, A., Gorecki, J., Chirico, M., & Hocking, T. (2024). Data.table: Extension of ‘data.frame‘. Retrieved from https://r-datatable.com
Behrens, J. T. (1997). Principles and procedures of exploratory data analysis. Psychological Methods, 2(2), 131–160. https://doi.org/10.1037/1082-989X.2.2.131
Bertin, J. (2011). Semiology of graphics: Diagrams, networks, maps (Vol. 1). ESRI Press.
Billings, Z. (2021). bardr: Complete works of William Shakespeare in tidy format. Retrieved from https://CRAN.R-project.org/package=bardr
Breiman, L. et al. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199–231. https://doi.org/10.1214/ss/1009213726
Brewer, C. (2019). ColorBrewer 2.0: Color advice for cartography. Retrieved from http://www.colorbrewer2.org
Cairo, A. (2012). The functional art: An introduction to information graphics and visualization. Berkeley CA: New Riders.
Cairo, A. (2016). The truthful art: Data, charts, and maps for communication. Berkeley CA: New Riders.
Carlson, M., Wilcox, R., Chou, C.-P., Chang, M., Yang, F., Blanchard, J., … Clark, F. (2011). Psychometric properties of reverse-scored items on the CES-D in a sample of ethnically diverse older adults. Psychological Assessment, 23(2), 558–562. https://doi.org/10.1037/a0022484
Chang, W. (2012). R graphics cookbook: Practical recipes for visualizing data (2nd ed.). Retrieved from https://r-graphics.org/
Christiansen, T., & Torkington, N. (2003). Perl Cookbook: Solutions & examples for Perl programmers (2nd ed.). O’Reilly Media, Inc.
Cleveland, W. S., & McGill, R. (1985). Graphical perception and graphical methods for analyzing scientific data. Science, 229(4716), 828–833. https://doi.org/10.1126/science.229.4716.828
Colebourne, S., & O’Neill, B. (2010). Joda-time: Java date and time API. Release, 1(2), 4–1. Retrieved from https://www.joda.org/joda-time/
Crameri, F. (2018). Scientific colour-maps. Zenodo. https://doi.org/10.5281/zenodo.1243862
Crameri, Fabio, Shephard, G. E., & Heron, P. J. (2020). The misuse of colour in science communication. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-19160-7
Davies, R., Locke, S., & D’Agostino McGowan, L. (2022). datasauRus: Datasets from the datasaurus dozen. Retrieved from https://github.com/jumpingrivers/datasauRus
De Veaux, R. D., Agarwal, M., Averett, M., Baumer, B. S., Bray, A., Bressoud, T. C., et al.others. (2017). Curriculum guidelines for undergraduate programs in data science. Annual Review of Statistics and Its Application, 4, 15–30. https://doi.org/10.1146/annurev-statistics-060116-053930
Donoho, D. (2017). 50 years of data science. Journal of Computational and Graphical Statistics, 26(4), 745–766. Retrieved from https://doi.org/10.1080/10618600.2017.1384734
Friendly, M. (2023). HistData: Data sets from the history of statistics and data visualization. Retrieved from https://friendly.github.io/HistData/
Gagolewski, M., Tartanus, B., Unicode, others;, Inc., et al. (2023). stringi: Fast and portable character string processing facilities. Retrieved from https://stringi.gagolewski.com/
Garnier, S. (2023). viridisLite: Default color maps from ’matplotlib’ (lite version). Retrieved from https://CRAN.R-project.org/package=viridisLite
Garnier, S. (2024). viridis: Colorblind-friendly color maps for R. https://doi.org/10.5281/zenodo.4679423
Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33(5), 587–606. https://doi.org/10.1016/j.socec.2004.09.033
Grolemund, G. (2014). Hands-on programming with R: Write your own functions and simulations. Retrieved from https://rstudio-education.github.io/hopr/
Grolemund, G., & Wickham, H. (2011). Dates and times made easy with lubridate. Journal of Statistical Software, Articles, 40(3), 1–25. https://doi.org/10.18637/jss.v040.i03
Healy, K. (2018). Data visualization: A practical introduction. Retrieved from https://socviz.co/
Henry, L., & Wickham, H. (2023). purrr: Functional programming tools. Retrieved from https://purrr.tidyverse.org
Hester, J., & Bryan, J. (2024). glue: Interpreted string literals. Retrieved from https://glue.tidyverse.org/
Huggett, N. (2019). Zeno’s paradoxes. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Winter 2019). https://plato.stanford.edu/entries/paradox-zeno/; Metaphysics Research Lab, Stanford University.
Hunt, A., & Thomas, D. (1999). The pragmatic programmer: From journeyman to master. Addison-Wesley.
Ihaka, R., Murrell, P., Hornik, K., Fisher, J. C., Stauffer, R., Wilke, C. O., … Zeileis, A. (2023). colorspace: A toolbox for manipulating and assessing colors and palettes. Retrieved from https://colorspace.R-Forge.R-project.org/
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Retrieved from http://faculty.marshall.usc.edu/gareth-james/ISL/
Johnston, M., & Robinson, D. (2023). gutenbergr: Download and process public domain works from Project Gutenberg. Retrieved from https://docs.ropensci.org/gutenbergr/
Kabacoff, R. (2018). Data visualization with R. Retrieved from https://rkabacoff.github.io/datavis/
Kelion, L. (2020). Excel: Why using Microsoft’s tool caused Covid-19 results to be lost. BBC News, (2020-10-05). Retrieved from https://www.bbc.com/news/technology-54423988
Knuth, D. E. (1968). The art of computer programming: Fundamental algorithms (Vol. 1). Retrieved from https://cs.stanford.edu/~knuth/taocp.html
Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97–111. https://doi.org/10.1093/comjnl/27.2.97
Le Poidevin, R. (2019). The experience and perception of time. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Summer 2019). https://plato.stanford.edu/entries/time-experience/; Metaphysics Research Lab, Stanford University.
Markosian, N. (2016). Time. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Fall 2016). https://plato.stanford.edu/entries/time/; Metaphysics Research Lab, Stanford University.
Matejka, J., & Fitzmaurice, G. (2017). Same stats, different graphs: Generating datasets with varied appearance and identical statistics through simulated annealing. Proceedings of the 2017 CHI conference on human factors in computing systems, 1290–1294. https://doi.org/10.1145/3025453.3025912
Matloff, N. (2011). The art of R programming: A tour of statistical software design. San Francisco, CA: No Starch Press.
Müller, K. (2020). here: A simpler way to find your files. Retrieved from https://here.r-lib.org/
Müller, K. (2023). hms: Pretty time of day. Retrieved from https://hms.tidyverse.org
Müller, K., & Wickham, H. (2023). tibble: Simple data frames. Retrieved from https://tibble.tidyverse.org
Neth, H. (2023a). Data science for psychologists. Retrieved from https://bookdown.org/hneth/i2ds/
Neth, H. (2023b). ds4psy: Data science for psychologists. https://doi.org/10.5281/zenodo.7229812
Neth, H., Basler, C., Bauer, P., Bodenstein, K., Drechsel, F., Franz, G.-L., … Trueb, L. (2023). unicol: The colors of your university. https://doi.org/10.5281/zenodo.8252106
Neth, H., & Gradwohl, N. (2023). unikn: Graphical elements of the University of Konstanz’s corporate design. https://doi.org/10.5281/zenodo.7096191
Neth, H., Gradwohl, N., Streeb, D., Keim, D. A., & Gaissmaier, W. (2021). Perspectives on the 2x2 matrix: Solving semantically distinct problems based on a shared structure of binary contingencies. Frontiers in Psychology, 11, 567817. https://doi.org/10.3389/fpsyg.2020.567817
Neuwirth, E. (2014). RColorBrewer: ColorBrewer palettes. Retrieved from https://CRAN.R-project.org/package=RColorBrewer
Nickerson, R. S. (2000). Null hypothesis significance testing: A review of an old and continuing controversy. Psychological Methods, 5(2), 241–301. https://doi.org/10.1037/1082-989X.5.2.241
Okabe, M., & Ito, K. (2008). Color universal design (CUD): How to make figures and presentations that are friendly to colorblind people. J*Fly: Data Depository for Drosophila Researchers. Retrieved from https://jfly.uni-koeln.de/color/
Payne, S. J., Duggan, G. B., & Neth, H. (2007). Discretionary task interleaving: Heuristics for time allocation in cognitive foraging. Journal of Experimental Psychology: General, 136(3), 370–380. https://doi.org/10.1037/0096-3445.136.3.370
Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060), 1226–1227. https://doi.org/10.1126/science.1213847
Phillips, N. D. (2017). yarrr: A companion to the e-Book "YaRrr!: The Pirate’s Guide to R". Retrieved from www.thepiratesguidetor.com
Phillips, N. D. (2018). YaRrr! The pirate’s guide to R. Retrieved from https://bookdown.org/ndphillips/YaRrr/
Phillips, N. D., Neth, H., Woike, J., & Gaissmaer, W. (2023). FFTrees: Generate, visualise, and evaluate fast-and-frugal decision trees. https://doi.org/10.1017/S1930297500006239
R Core Team. (2024). R base: A language and environment for statistical computing. Retrieved from https://www.R-project.org
Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401. https://doi.org/10.1177/014662167700100306
Schlimm, D., & Neth, H. (2008). Modeling ancient and modern arithmetic practices: Addition and multiplication with Arabic and Roman numerals. In B. Love, K. McRae, & V. Sloutsky (Eds.), Proceedings of the 30th Annual Meeting of the Cognitive Science Society (pp. 2097–2102). Retrieved from http://nbn-resolving.de/urn:nbn:de:bsz:352-283870
Seligman, M. E., Steen, T. A., Park, N., & Peterson, C. (2005). Positive psychology progress: Empirical validation of interventions. American Psychologist, 60(5), 410. https://doi.org/10.1037/0003-066X.60.5.410
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Champaign, IL: University of Illinois Press.
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2014). Data from paper “False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant”. Journal of Open Psychology Data, 2(1). https://doi.org/10.5334/jopd.aa
Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the theory in 1970. American Psychologist, 26(2), 145–159. https://doi.org/10.1037/h0030806
Spinu, V., Grolemund, G., & Wickham, H. (2023). lubridate: Make dealing with dates a little easier. Retrieved from https://lubridate.tidyverse.org
Streeb, D., El-Assady, M., Keim, D., & Chen, M. (2019). Why visualize? Untangling a large network of arguments. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2019.2940026
Todd, P. M., Gigerenzer, G., & the ABC Research Group. (2012). Ecological rationality: Intelligence in the world. New York, NY: Oxford University Press.
Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, CT: Graphics Press.
Tufte, E. R. (2006). Beautiful evidence (Vol. 1). Cheshire, CT: Graphics Press.
Tufte, E. R., Goeler, N. H., & Benson, R. (1990). Envisioning information (Vol. 126). Cheshire, CT: Graphics Press.
Tukey, J. W. (1969). Analyzing data: Sanctification or detective work. American Psychologist, 2, 83–91. https://doi.org/10.1037/h0027108
Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.
Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34(1), 23–25. Retrieved from https://www.jstor.org/stable/2682991
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Retrieved from http://www.stats.ox.ac.uk/pub/MASS4
Wasserman, L. (2004). All of statistics: A concise course in statistical inference. New York, NY: Springer.
Wickham, H. (2014a). Advanced R (1st ed.). Retrieved from http://adv-r.had.co.nz/
Wickham, H. (2014b). Tidy data. Journal of Statistical Software, 59(10), 1–23. https://doi.org/10.18637/jss.v059.i10
Wickham, H. (2015). R packages: Organize, test, document, and share your code. Retrieved from http://adv-r.had.co.nz/
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis (2nd ed.). Retrieved from https://ggplot2-book.org/
Wickham, H. (2019). Advanced R (2nd ed.). Retrieved from https://adv-r.hadley.nz/
Wickham, H. (2022). stringr: Simple, consistent wrappers for common string operations. Retrieved from https://stringr.tidyverse.org
Wickham, H. (2023). tidyverse: Easily install and load the ’tidyverse’. Retrieved from https://tidyverse.tidyverse.org
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for data science (2nd ed.). Retrieved from https://r4ds.hadley.nz
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., … Dunnington, D. (2023). ggplot2: Create elegant data visualisations using the grammar of graphics. Retrieved from https://ggplot2.tidyverse.org
Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). dplyr: A grammar of data manipulation. Retrieved from https://dplyr.tidyverse.org
Wickham, H., & Girlich, M. (2024). tidyr: Tidy messy data. Retrieved from https://tidyr.tidyverse.org
Wickham, H., & Grolemund, G. (2017). R for data science: Import, tidy, transform, visualize, and model data. Retrieved from http://r4ds.had.co.nz
Wickham, H., Hester, J., & Bryan, J. (2024). readr: Read rectangular text data. Retrieved from https://CRAN.R-project.org/package=readr
Wilke, C. O. (2019). Fundamentals of data visualization: A primer on making informative and compelling figures. Retrieved from https://clauswilke.com/dataviz/
Wilkinson, L. (2005). The grammar of graphics (2nd edition). Springer.
Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R., & Schüz, B. (2017). Web-based positive psychology interventions: A reexamination of effectiveness. Journal of Clinical Psychology, 73(3), 218–232. https://doi.org/10.1002/jclp.22328
Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R., & Schüz, B. (2018). Data from “Web-based positive psychology interventions: A reexamination of effectiveness”. Journal of Open Psychology Data, 6(1). https://doi.org/10.5334/jopd.35
Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Retrieved from http://yihui.name/knitr/
Xie, Y. (2023a). bookdown: Authoring books and technical documents with R Markdown. Retrieved from https://github.com/rstudio/bookdown
Xie, Y. (2023b). knitr: A general-purpose package for dynamic report generation in R. Retrieved from https://yihui.org/knitr/
Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R Markdown: The definitive guide. Retrieved from https://bookdown.org/yihui/rmarkdown/
Xie, Y., Dervieux, C., & Riederer, E. (2020). R markdown cookbook. Retrieved from https://bookdown.org/yihui/rmarkdown-cookbook/
Yau, N. (2011). Visualize this: The FlowingData guide to design, visualization, and statistics. Hoboken, NJ: John Wiley & Sons.
Yau, N. (2013). Data points: Visualization that means something. Hoboken, NJ: John Wiley & Sons.
Yu, A. Z., Ronen, S., Hu, K., Lu, T., & Hidalgo, C. A. (2016). Pantheon 1.0, a manually verified dataset of globally famous biographies. Scientific Data, 3(1), 1–16. https://doi.org/10.1038/sdata.2015.75
Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., … Wilke, C. O. (2020). colorspace: A toolbox for manipulating and assessing colors and palettes. Journal of Statistical Software, 96(1), 1–49. https://doi.org/10.18637/jss.v096.i01