Resources

We conclude each chapter with links to additional resources. In this introduction, these are pointers to the materials and software requirements of this book, as well as related resources on R (R Core Team, 2020) and the tidyverse (Wickham, Averick, et al., 2019).

This book and course

Resources related to this book and course at the University of Konstanz, 2020/2021:

uni.kn

Textbook

The textbook for this course is Data Science for Psychologists (Neth, 2020):

  • Neth, H. (2020). ds4psy: Data Science for Psychologists.
    Social Psychology and Decision Sciences, University of Konstanz, Germany.
    Textbook and R package (version 0.5.0, Sep 1, 2020).
    Retrieved from https://bookdown.org/hneth/ds4psy/.

Some topics not covered here contain pointers to R for Data Science (Wickham & Grolemund, 2017).

Software and packages

Working through this book assumes an installation of three types of software programs:

  1. An R engine: The R project for statistical computing is the origin of all things R. A current distribution of R (e.g., R version 4.0.3) for your machine can be downloaded from one if its mirrors.

  2. An R interface: RStudio provides an integrated development environment (IDE) for R.6

  3. Additional tools: The R packages of the tidyverse (Wickham, 2019c) and ds4psy (Neth, 2020).

The RStudio IDE

The distinctions between R, R packages, and RStudio are somewhat confusing at first and will be explained in more detail in Chapter 1: Basic R concepts and commands (see Section 1.1.3). At this point, it is good to know that we can interact with R and manage our R packages withing the RStudio IDE. Given the large variety of functions and levels, this interface is divided into many sub-windows that can be arranged and expanded in various ways. To get started, we only need to distinguish between the main Editor window (typically located on the top left), the Console (for entering R commands), and a few auxiliary windows that may display outputs (e.g., a Viewer for showing visualizations) and provide information on our current Environment or the Packages available on our computer. A useful window is Help: Although its main page provides mostly links to online materials, any R package contains detailed documentations on and examples of its functions that can be browsed in this window.

Figure 0.4 shows the RStudio cheatsheet on the RStudio IDE and illustrates that there are dozens of other functions available. As you get more experienced, you will discover lots of nifty features and shortcuts. Especially foldable sections and keyboard shortcuts (see Alt + Shift + K for an overview) can make your life in R a lot easier. But don’t let the abundance of options overwhelm you — I have yet to meet a person who needs or uses all of them.

RStudio cheatsheet (from RStudio Cheat Sheets).

Figure 0.4: RStudio cheatsheet (from RStudio Cheat Sheets).

A useful feature of RStudio is that collections of files can be combined into projects. For instance, it makes sense to store everything related to this course in a dedicated directory on your hard drive (e.g., in a folder “ds4psy”) and create an RStudio project (also named ds4psy) that uses this directory as its root. An immediate benefit of using projects is that your entire workflow gets more organized.7

R Markdown

R Markdown allows weaving text and code into reproducible research documents. For quick instructions on combining text and code, see Appendix F, or read the more detailed introduction of Chapter 27: R Markdown of the r4ds textbook. Alternatively, just start with one of the following templates:

  • minimal template: rmd_template_s [in .Rmd | .html format]

  • medium template: rmd_template_m [in .Rmd | .html format]

  • explicit explanations: Rmarkdown_basics [in .Rmd | .html format]

A typical R Markdown document consists of three distinct parts:

  1. A header for setting global document options;
  2. Text that may contain headings, paragraphs, and itemized lists; and
  3. Code chunks that contain and evaluate R code.

When using R Markdown (typically saved as with the file extension .Rmd), you can generate various output formats to show and transfer your work. I recommend generating output documents in HTML format (i.e., .html files), as they can easily be exchanged and shown on most devices and platforms.

Fortunately, the range of commands required to benefit from R Markdown is very limited. For instance, the commands in the help file Help > Markdown Quick Reference of RStudio provide a good start for creating beautiful and functional documents. Beyond these basics, the R Markdown Cheatsheet — also available in RStudio by selecting Help > Cheatsheets > R Markdown Cheat Sheet — provides a more comprehensive overview of R Markdown functionality and commands:

R Markdown cheatsheet (from RStudio cheatsheets).

Figure 0.5: R Markdown cheatsheet (from RStudio cheatsheets).

Other books

This book and course were originally based on R for Data Science (Wickham & Grolemund, 2017). The contents of this book are more general and more tidyverse-centric, but still a classic and readworthy reference:

  • Wickham, H., & Grolemund, G. (2017). R for data science: Import, tidy, transform, visualize, and model data. Sebastopol, Canada: O’Reilly Media, Inc. [Available at http://r4ds.had.co.nz.]

The ebook R for data science: Exercise solutions (by Jeffrey B. Arnold) provides exercise solutions to the exercises in r4ds.

There are many other excellent books (and even more fragmentary and bad books) on data science in R for various audiences. Here are some recommendations for finding additional texts and courses on learning data science or statistics with R:

  • Bookdown.org is a major catalyst for data science in R, as it provides many great books on various topics at no charge. The archive page contains books on an even wider selection of topics, including many unfinished ones. Easy recommendations include:

Web sites and blogs

Online information on R is abundant, but can be hard to navigate. Useful starting points include:

  • R-bloggers collects blog posts on R.

  • Quick-R (by Robert Kabacoff) is a popular website on R programming that also provides many pointers for using R in statistics.

  • The Simply statistics blog (by Rafa Irizarry, Roger Peng, and Jeff Leek) provides insightful and inspiring articles on many data science topics.

  • The Win vector blog (by John Mount and Nina Zumel) provides noteworthy observations on particular problems and data science in general.

  • The Learning Machines blog (by Holger K. von Jouanne-Diedrich) contains many readworthy articles on using R for modeling and machine learning.

  • Towards data science provides background articles on current data science issues.

Educational resources

Other R courses and exercises include:

Miscellaneous

Other helpful links that do not fit into the above categories include:


ds4psy

[index.Rmd updated on 2020-10-22 16:50:42 by hn.]

References

Neth, H. (2020). ds4psy: Data science for psychologists. Retrieved from https://CRAN.R-project.org/package=ds4psy

R Core Team. (2020). R base: A language and environment for statistical computing. Retrieved from https://www.R-project.org

Wickham, H. (2014a). Advanced R (1st ed.). Retrieved from http://adv-r.had.co.nz/

Wickham, H. (2015). R packages: Organize, test, document, and share your code. Retrieved from http://adv-r.had.co.nz/

Wickham, H. (2019a). Advanced R (2nd ed.). Retrieved from https://adv-r.hadley.nz/

Wickham, H. (2019c). tidyverse: Easily install and load the ’tidyverse’. Retrieved from https://CRAN.R-project.org/package=tidyverse

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

Wickham, H., & Grolemund, G. (2017). R for data science: Import, tidy, transform, visualize, and model data. Retrieved from http://r4ds.had.co.nz


  1. Installing RStudio typically provides many additional R packages. Two packages we will use extensively are knitr (Xie, 2020b) and rmarkdown (Allaire et al., 2020).

  2. See the introductory chapters of R for Data Science (Wickham & Grolemund, 2017) for short, but helpful instructions on organizing your workflow with RStudio — especially the even-numbered chapters basics (Chapter 4), scripts (Chapter 6), and projects (Chapter 8).

  3. Disclaimer: When first starting to teach this course, I inherited its materials from Nathaniel. See Rpository.com/learnR/ for a course with corresponding exercises and solutions.