5.6 Luescher analysis
The two pion energy states \(omega_n\) are the roots of the Luecher quantization condition, which in the continuum for \(l=1\) takes the for of \[ \cot \delta (k_n) +\cot\phi(q_n)=0 \]
with:
- \(\omega_n=2\sqrt{k_n^2+m^2}\)
- \(q_n=\frac{k_nL}{2\pi}\)
- \(\cot\phi(q_n)=-\frac{Z_{00}(1,q_n^2)}{q_n \pi^{3/2}}\)