## 10.5$$a_{\mu}^{W}(s)$$ cov

The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2]+a^4P[4] \end{cases}$

$\begin{gather} \chi^2/d.o.f.=0.158663 \\ P[0]=2.74062e-09\pm (2.9e-11) \\ P[1]=-7.39047e-09\pm (1.3e-08) \\ P[2]=-5.11908e-09\pm (1.3e-08) \\ P[3]=9.38556e-07\pm (1.3e-06) \\ P[4]=-2.96284e-07\pm (1.3e-06) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.993& -0.993& 0.984& 0.982\\ -0.993& 1& 0.999& -0.998& -0.996\\ -0.993& 0.999& 1& -0.997& -0.997\\ 0.984& -0.998& -0.997& 1& 0.998\\ 0.982& -0.996& -0.997& 0.998& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}

### 10.5.2 quadratic eq

The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2] \end{cases}$

$\begin{gather} \chi^2/d.o.f.=0.129494 \\ P[0]=2.74732e-09\pm (5.5e-12) \\ P[1]=-1.03006e-08\pm (1.2e-09) \\ P[2]=-8.04271e-09\pm (9.5e-10) \\ P[3]=1.23266e-06\pm (7.1e-08) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.865& -0.927& 0.358\\ -0.865& 1& 0.939& -0.705\\ -0.927& 0.939& 1& -0.439\\ 0.358& -0.705& -0.439& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}

### 10.5.3 quadratic op

The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2]+a^4P[3] \end{cases}$

$\begin{gather} \chi^2/d.o.f.=0.225532 \\ P[0]=2.71928e-09\pm (5.1e-12) \\ P[1]=1.88963e-09\pm (8.4e-10) \\ P[2]=4.1863e-09\pm (9e-10) \\ P[3]=-1.23853e-06\pm (7.2e-08) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.921& -0.846& -0.0785\\ -0.921& 1& 0.881& 0.159\\ -0.846& 0.881& 1& -0.303\\ -0.0785& 0.159& -0.303& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}