## 10.7$$a_{\mu}^{W}(c)$$

$$a^2(\mbox{fm})$$ $$a_{\mu}^{W}(c)$$ r
0.0063387 3.982(20)e-10 0
0.0046522 3.634(19)e-10 0
0.0032397 3.376(17)e-10 0
0.0082451 4.402(27)e-10 0
0.0082451 4.404(28)e-10 0
0.0082451 4.394(27)e-10 0
0.0063387 3.497(18)e-10 1
0.0046522 3.324(18)e-10 1
0.0032397 3.194(16)e-10 1
0.0082451 3.715(30)e-10 1
0.0082451 3.719(31)e-10 1
0.0082451 3.708(30)e-10 1

The continuum fit is done with the function $\begin{cases} a_{\mu}^{W}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{W}(op,\ell)=P[0]+a^2P[2]+a^4P[4] \end{cases}$

$\begin{gather} \chi^2/d.o.f.=0.0920876 \\ P[0]=2.89897e-10\pm (2.9e-12) \\ P[1]=1.26607e-08\pm (1.1e-09) \\ P[2]=8.3375e-09\pm (1.3e-09) \\ P[3]=6.75855e-07\pm (1.1e-07) \\ P[4]=1.83721e-07\pm (1.5e-07) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.811& -0.841& 0.82& 0.856\\ -0.811& 1& 0.971& -0.989& -0.936\\ -0.841& 0.971& 1& -0.934& -0.992\\ 0.82& -0.989& -0.934& 1& 0.893\\ 0.856& -0.936& -0.992& 0.893& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}

### 10.7.2 quadratic eq

The continuum fit is done with the function $\begin{cases} a_{\mu}^{W}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{W}(op,\ell)=P[0]+a^2P[2] \end{cases}$

$\begin{gather} \chi^2/d.o.f.=0.155493 \\ P[0]=2.849e-10\pm (2.2e-12) \\ P[1]=1.45283e-08\pm (6.1e-10) \\ P[2]=1.03859e-08\pm (4e-10) \\ P[3]=5.19749e-07\pm (5.6e-08) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.588& -0.63& 0.531\\ -0.588& 1& 0.955& -0.933\\ -0.63& 0.955& 1& -0.79\\ 0.531& -0.933& -0.79& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}

### 10.7.3 quadratic op

The continuum fit is done with the function $\begin{cases} a_{\mu}^{W}(eq,\ell)=P[0]+a^2P[1]\\ a_{\mu}^{W}(op,\ell)=P[0]+a^2P[2]+a^4P[3] \end{cases}$

$\begin{gather} \chi^2/d.o.f.=1.12424 \\ P[0]=2.71227e-10\pm (1.7e-12) \\ P[1]=2.02846e-08\pm (1.4e-10) \\ P[2]=1.53474e-08\pm (4.6e-10) \\ P[3]=-4.07447e-07\pm (7.7e-08) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& 0.0225& -0.204& 0.233\\ 0.0225& 1& 0.609& -0.386\\ -0.204& 0.609& 1& -0.966\\ 0.233& -0.386& -0.966& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}