Chapter 3 Correlator fit
3.0.1 different tentatives of fitting the l-l correlator
Here we try to interpolate the correlator at t0=0.2fm, we use the following function to interpolate:
C_{l}^{eq}_2exp
: N(P[0]eP[1](t)+P[2]eP[3](t))C_{l}^{eq}_1exp
: N(P[0]eP[1](t))C_{l}^{eq}_poly2
: P[0]+P[1](t−t0)+P[2](t−t0)2C_{l}^{eq}_poly3
: P[0]+P[1](t−t0)+P[2](t−t0)2+P[3](t−t0)3
N is not a fit parameter but a normalization to ensure that the correlator at
t0 is c(t0)=P[0], for istance in C_{l}^{eq}_1exp
N=e−P[1]t0
The most promising one is the C_{l}^{eq}_2exp
using 4 points. Below result
and plot for each of the fits.
Notice we are plotting in log10 scale and the polynomial get distorted
C_{l}^{eq}_2exp = -3.58(21)e+5 3.401(71) 1.728(24)e+8 -19.420(95) χ2/dof= inf
C_{l}^{eq}_1exp = 9.48(23)e+6 -17.00(12) χ2/dof= 20936
C_{l}^{eq}_poly2 = 1.297(35)e+7 -2.417(16)e+8 1.064(16)e+9 χ2/dof= 6.9873e+05
C_{l}^{eq}_poly3 = 8.32(25)e+6 -1.734(46)e+8 2.0222(31)e+9 -7.47(17)e+9 χ2/dof= inf
C_{l}^{eq}_poly2_3pt = 7.23(33)e+6 -2.274(55)e+8 2.435(36)e+9 χ2/dof= inf