10.2 aWμ cov

10.2.1 quadratic

The continuum fit is done with the function {aWμ(eq,)+109ΔGS=P[0]+a2P[1]109ΔGS(P[3]a2)+P[5](MπMphysπ)aWμ(op,)+109ΔGS=P[0]+a2P[2]109ΔGS(P[4]a2)+P[5](MπMphysπ)

χ2/d.o.f.=0.00614783P[0]=2.10501e08±(4e10)P[1]=2.71802e07±(1.7e07)P[2]=1.87139e07±(1.7e07)P[3]=186.451±(59)P[4]=123.097±(88)P[5]=1.87816e05±(1.7e05)P[6]=2.44009e05±(1.7e05) {C=(10.990.990.03430.09320.9790.9770.9910.990.1140.1420.9820.9970.990.9910.06710.1810.9970.980.03430.1140.067110.2230.07150.1360.09320.1420.1810.22310.1910.1620.9790.9820.9970.07150.19110.9750.9770.9970.980.1360.1620.9751)det=0}

we plot aWμ(eq(op))+109ΔGS+109ΔGSP[3(4)]a2

00.0020.0040.0060.008−3−2−10123
(op,1)$a^2(\mbox{fm})$$a_{\mu}^{W}(\ell)$
title<- paste("amu_W_l_RF__w1_a4_eq_op_common__cov")
file=sprintf("./shiny/fit_plots/fit_all/%s_fit_P.dat",title)
df<-read_fit_P_file(file)
cat("$\\chi^2_{dof}=$",df$chi2,"\n\n")

χ2dof= 1.23569

for(i in seq_along(df$P[,1]) )
  cat("$P[",i-1,"]=$",mean_print(df$P[i,2],df$P[i,3] ),"\n\n")

P[0]= 2.108(40)e-8

P[1]= -2.7(1.7)e-7

P[2]= -2.2(1.7)e-7

P[3]= -163(57)

P[4]= 88(88)

P[5]= 2.4(1.6)e-5

file=sprintf("./shiny/fit_plots/fit_all/%s_fit_out_ysub_afm.txt",title)
if(!file.exists(file)){
  file=sprintf("./fit_all/%s_fit_data.txt",title)
}
df<- read.table(file, header=FALSE, fill=TRUE)


gg<- myggplot()
idy<-9
gg<-gg+  geom_point(data=df, mapping=aes(x=df[,1] , y=df[,idy],
                          color=as.factor(df[,idy+2]), shape=as.factor(df[,idy+2])) 
                    ,width=1e-4)  +labs(color = "", shape="")
gg<-gg + geom_errorbar(data=df, mapping=aes(x=df[,1] , ymin=df[,idy]-df[,idy+1],
               ymax=df[,idy]+df[,idy+1],color=as.factor(df[,idy+2]),shape=as.factor(df[,idy+2]) ) 
               ,width=1e-4)


df[,7]<-plyr::laply(df[,7],eq_op)
datalist = list()
for (n in c(1:2)){
  
file=sprintf("/home/garofalo/analysis/g-2/fit_all/%s_fit_out_n%d_afm.txt",title,n-1)
datalist[[n]]<- read.table(file, header=FALSE, fill=TRUE,   
                 col.names=c(paste0("x",n),paste0("fit",n),paste0("fiterr",n)))

gg<-gg + geom_ribbon(data=datalist[[n]], mapping=aes_string(x=datalist[[n]][,1] , ymin=datalist[[n]][,2]-datalist[[n]][,3], ymax=datalist[[n]][,2]+datalist[[n]][,3]),alpha=0.5, fill="red")
gg<-gg + geom_line(data=datalist[[n]], mapping=aes_string(x=datalist[[n]][,1] , y=datalist[[n]][,2]  ),color="red" )

}

fig<- myplotly(gg,"","$a^2(\\mbox{fm})$", "$a_{\\mu}^{W}(\\ell)$", to_print = TRUE)
00.0020.0040.0060.0082.04e−82.06e−82.08e−82.1e−82.12e−82.14e−8
(0,1)1$a^2(\mbox{fm})$$a_{\mu}^{W}(\ell)$
title<- paste("amu_W_l_RF__w1_a4_eq_op__cov")
file=sprintf("./shiny/fit_plots/fit_all/%s_fit_P.dat",title)
df<-read_fit_P_file(file)
cat("$\\chi^2_{dof}=$",df$chi2,"\n\n")

χ2dof= 0.00614783

for(i in seq_along(df$P[,1]) )
  cat("$P[",i-1,"]=$",mean_print(df$P[i,2],df$P[i,3] ),"\n\n")

P[0]= 2.105(40)e-8

P[1]= -2.7(1.7)e-7

P[2]= -1.9(1.7)e-7

P[3]= -186(59)

P[4]= 123(88)

P[5]= 1.9(1.7)e-5

P[6]= 2.4(1.7)e-5

file=sprintf("./shiny/fit_plots/fit_all/%s_fit_out_ysub_afm.txt",title)
if(!file.exists(file)){
  file=sprintf("./fit_all/%s_fit_data.txt",title)
}
df<- read.table(file, header=FALSE, fill=TRUE)


gg<- myggplot()
idy<-9
gg<-gg+  geom_point(data=df, mapping=aes(x=df[,1] , y=df[,idy],
                          color=as.factor(df[,idy+2]), shape=as.factor(df[,idy+2])) 
                    ,width=1e-4)  +labs(color = "", shape="")
gg<-gg + geom_errorbar(data=df, mapping=aes(x=df[,1] , ymin=df[,idy]-df[,idy+1],
               ymax=df[,idy]+df[,idy+1],color=as.factor(df[,idy+2]),shape=as.factor(df[,idy+2]) ) 
               ,width=1e-4)


df[,7]<-plyr::laply(df[,7],eq_op)
datalist = list()
for (n in c(1:2)){
  
file=sprintf("/home/garofalo/analysis/g-2/fit_all/%s_fit_out_n%d_afm.txt",title,n-1)
datalist[[n]]<- read.table(file, header=FALSE, fill=TRUE,   
                 col.names=c(paste0("x",n),paste0("fit",n),paste0("fiterr",n)))

gg<-gg + geom_ribbon(data=datalist[[n]], mapping=aes_string(x=datalist[[n]][,1] , ymin=datalist[[n]][,2]-datalist[[n]][,3], ymax=datalist[[n]][,2]+datalist[[n]][,3]),alpha=0.5, fill="red")
gg<-gg + geom_line(data=datalist[[n]], mapping=aes_string(x=datalist[[n]][,1] , y=datalist[[n]][,2]  ),color="red" )

}

fig<- myplotly(gg,"","$a^2(\\mbox{fm})$", "$a_{\\mu}^{W}(\\ell)$", to_print = TRUE)
00.0020.0040.0060.0082.02e−82.04e−82.06e−82.08e−82.1e−82.12e−82.14e−8
(0,1)1$a^2(\mbox{fm})$$a_{\mu}^{W}(\ell)$