10.2 aWμ cov
10.2.1 quadratic
The continuum fit is done with the function {aWμ(eq,ℓ)+109ΔGS=P[0]+a2P[1]−109ΔGS(P[3]a2)+P[5](Mπ−Mphysπ)aWμ(op,ℓ)+109ΔGS=P[0]+a2P[2]−109ΔGS(P[4]a2)+P[5](Mπ−Mphysπ)
χ2/d.o.f.=0.00614783P[0]=2.10501e−08±(4e−10)P[1]=−2.71802e−07±(1.7e−07)P[2]=−1.87139e−07±(1.7e−07)P[3]=−186.451±(59)P[4]=123.097±(88)P[5]=1.87816e−05±(1.7e−05)P[6]=2.44009e−05±(1.7e−05) {C=(1−0.99−0.99−0.0343−0.09320.9790.977−0.9910.990.1140.142−0.982−0.997−0.990.9910.06710.181−0.997−0.98−0.03430.1140.067110.223−0.0715−0.136−0.09320.1420.1810.2231−0.191−0.1620.979−0.982−0.997−0.0715−0.19110.9750.977−0.997−0.98−0.136−0.1620.9751)det=0}
we plot aWμ(eq(op))+109ΔGS+109ΔGSP[3(4)]a2
<- paste("amu_W_l_RF__w1_a4_eq_op_common__cov")
title=sprintf("./shiny/fit_plots/fit_all/%s_fit_P.dat",title)
file<-read_fit_P_file(file)
dfcat("$\\chi^2_{dof}=$",df$chi2,"\n\n")
χ2dof= 1.23569
for(i in seq_along(df$P[,1]) )
cat("$P[",i-1,"]=$",mean_print(df$P[i,2],df$P[i,3] ),"\n\n")
P[0]= 2.108(40)e-8
P[1]= -2.7(1.7)e-7
P[2]= -2.2(1.7)e-7
P[3]= -163(57)
P[4]= 88(88)
P[5]= 2.4(1.6)e-5
=sprintf("./shiny/fit_plots/fit_all/%s_fit_out_ysub_afm.txt",title)
fileif(!file.exists(file)){
=sprintf("./fit_all/%s_fit_data.txt",title)
file
}<- read.table(file, header=FALSE, fill=TRUE)
df
<- myggplot()
gg<-9
idy<-gg+ geom_point(data=df, mapping=aes(x=df[,1] , y=df[,idy],
ggcolor=as.factor(df[,idy+2]), shape=as.factor(df[,idy+2]))
width=1e-4) +labs(color = "", shape="")
,<-gg + geom_errorbar(data=df, mapping=aes(x=df[,1] , ymin=df[,idy]-df[,idy+1],
ggymax=df[,idy]+df[,idy+1],color=as.factor(df[,idy+2]),shape=as.factor(df[,idy+2]) )
width=1e-4)
,
7]<-plyr::laply(df[,7],eq_op)
df[,= list()
datalist for (n in c(1:2)){
=sprintf("/home/garofalo/analysis/g-2/fit_all/%s_fit_out_n%d_afm.txt",title,n-1)
file<- read.table(file, header=FALSE, fill=TRUE,
datalist[[n]]col.names=c(paste0("x",n),paste0("fit",n),paste0("fiterr",n)))
<-gg + geom_ribbon(data=datalist[[n]], mapping=aes_string(x=datalist[[n]][,1] , ymin=datalist[[n]][,2]-datalist[[n]][,3], ymax=datalist[[n]][,2]+datalist[[n]][,3]),alpha=0.5, fill="red")
gg<-gg + geom_line(data=datalist[[n]], mapping=aes_string(x=datalist[[n]][,1] , y=datalist[[n]][,2] ),color="red" )
gg
}
<- myplotly(gg,"","$a^2(\\mbox{fm})$", "$a_{\\mu}^{W}(\\ell)$", to_print = TRUE) fig
<- paste("amu_W_l_RF__w1_a4_eq_op__cov")
title=sprintf("./shiny/fit_plots/fit_all/%s_fit_P.dat",title)
file<-read_fit_P_file(file)
dfcat("$\\chi^2_{dof}=$",df$chi2,"\n\n")
χ2dof= 0.00614783
for(i in seq_along(df$P[,1]) )
cat("$P[",i-1,"]=$",mean_print(df$P[i,2],df$P[i,3] ),"\n\n")
P[0]= 2.105(40)e-8
P[1]= -2.7(1.7)e-7
P[2]= -1.9(1.7)e-7
P[3]= -186(59)
P[4]= 123(88)
P[5]= 1.9(1.7)e-5
P[6]= 2.4(1.7)e-5
=sprintf("./shiny/fit_plots/fit_all/%s_fit_out_ysub_afm.txt",title)
fileif(!file.exists(file)){
=sprintf("./fit_all/%s_fit_data.txt",title)
file
}<- read.table(file, header=FALSE, fill=TRUE)
df
<- myggplot()
gg<-9
idy<-gg+ geom_point(data=df, mapping=aes(x=df[,1] , y=df[,idy],
ggcolor=as.factor(df[,idy+2]), shape=as.factor(df[,idy+2]))
width=1e-4) +labs(color = "", shape="")
,<-gg + geom_errorbar(data=df, mapping=aes(x=df[,1] , ymin=df[,idy]-df[,idy+1],
ggymax=df[,idy]+df[,idy+1],color=as.factor(df[,idy+2]),shape=as.factor(df[,idy+2]) )
width=1e-4)
,
7]<-plyr::laply(df[,7],eq_op)
df[,= list()
datalist for (n in c(1:2)){
=sprintf("/home/garofalo/analysis/g-2/fit_all/%s_fit_out_n%d_afm.txt",title,n-1)
file<- read.table(file, header=FALSE, fill=TRUE,
datalist[[n]]col.names=c(paste0("x",n),paste0("fit",n),paste0("fiterr",n)))
<-gg + geom_ribbon(data=datalist[[n]], mapping=aes_string(x=datalist[[n]][,1] , ymin=datalist[[n]][,2]-datalist[[n]][,3], ymax=datalist[[n]][,2]+datalist[[n]][,3]),alpha=0.5, fill="red")
gg<-gg + geom_line(data=datalist[[n]], mapping=aes_string(x=datalist[[n]][,1] , y=datalist[[n]][,2] ),color="red" )
gg
}
<- myplotly(gg,"","$a^2(\\mbox{fm})$", "$a_{\\mu}^{W}(\\ell)$", to_print = TRUE) fig