10.4 \(a_{\mu}^{W}(s)\)
\(a^2(\mbox{fm})\) | \(a_{\mu}^{W}(s)\) | r |
---|---|---|
0.0063387 | 2.7314(24)e-9 | 0 |
0.0063387 | 2.7315(23)e-9 | 0 |
0.0046522 | 2.7265(28)e-9 | 0 |
0.0032397 | 2.7264(33)e-9 | 0 |
0.0063387 | 2.6961(26)e-9 | 1 |
0.0063387 | 2.6965(24)e-9 | 1 |
0.0046522 | 2.7096(31)e-9 | 1 |
0.0032397 | 2.7210(33)e-9 | 1 |
10.4.1 quadratic
The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2]+a^4P[4] \end{cases} \]
\[\begin{gather} \chi^2/d.o.f.=0.0150548 \\ P[0]=2.74345e-09\pm (3.1e-11) \\ P[1]=-8.6489e-09\pm (1.3e-08) \\ P[2]=-6.58717e-09\pm (1.3e-08) \\ P[3]=1.06654e-06\pm (1.3e-06) \\ P[4]=-1.34365e-07\pm (1.4e-06) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.994& -0.993& 0.986& 0.984\\ -0.994& 1& 0.999& -0.998& -0.996\\ -0.993& 0.999& 1& -0.997& -0.998\\ 0.986& -0.998& -0.997& 1& 0.998\\ 0.984& -0.996& -0.998& 0.998& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}
10.4.2 quadratic eq
The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2] \end{cases} \]
\[\begin{gather} \chi^2/d.o.f.=0.0151404 \\ P[0]=2.74635e-09\pm (5.6e-12) \\ P[1]=-9.88271e-09\pm (1.3e-09) \\ P[2]=-7.88942e-09\pm (9.4e-10) \\ P[3]=1.18952e-06\pm (1.2e-07) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.827& -0.926& 0.354\\ -0.827& 1& 0.848& -0.767\\ -0.926& 0.848& 1& -0.324\\ 0.354& -0.767& -0.324& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}
10.4.3 quadratic op
The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2]+a^4P[3] \end{cases} \]
\[\begin{gather} \chi^2/d.o.f.=0.264374 \\ P[0]=2.71992e-09\pm (5.2e-12) \\ P[1]=1.76957e-09\pm (8.3e-10) \\ P[2]=3.55553e-09\pm (1.1e-09) \\ P[3]=-1.15303e-06\pm (1.2e-07) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.921& -0.754& 0.0588\\ -0.921& 1& 0.776& 0.00182\\ -0.754& 0.776& 1& -0.617\\ 0.0588& 0.00182& -0.617& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}