## 10.8$$a_{\mu}^{W}(c)$$ cov

The continuum fit is done with the function $\begin{cases} a_{\mu}^{W}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{W}(op,\ell)=P[0]+a^2P[2]+a^4P[4] \end{cases}$

$\begin{gather} \chi^2/d.o.f.=2.55781 \\ P[0]=2.95592e-10\pm (3.5e-12) \\ P[1]=1.03642e-08\pm (1.3e-09) \\ P[2]=6.72868e-09\pm (1.3e-09) \\ P[3]=8.91996e-07\pm (1.3e-07) \\ P[4]=2.60009e-07\pm (1.4e-07) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.873& -0.878& 0.877& 0.879\\ -0.873& 1& 0.999& -0.992& -0.993\\ -0.878& 0.999& 1& -0.99& -0.994\\ 0.877& -0.992& -0.99& 1& 0.996\\ 0.879& -0.993& -0.994& 0.996& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}

The continuum fit is done with the function $\begin{cases} a_{\mu}^{W}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{W}(op,\ell)=P[0]+a^2P[2] \end{cases}$
$\begin{gather} \chi^2/d.o.f.=2.32269 \\ P[0]=2.87937e-10\pm (1.8e-12) \\ P[1]=1.33414e-08\pm (2.4e-10) \\ P[2]=9.72886e-09\pm (2.3e-10) \\ P[3]=6.37253e-07\pm (1.1e-08) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.328& -0.378& 0.0961\\ -0.328& 1& 0.977& -0.294\\ -0.378& 0.977& 1& -0.103\\ 0.0961& -0.294& -0.103& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}
The continuum fit is done with the function $\begin{cases} a_{\mu}^{W}(eq,\ell)=P[0]+a^2P[1]\\ a_{\mu}^{W}(op,\ell)=P[0]+a^2P[2]+a^4P[3] \end{cases}$
$\begin{gather} \chi^2/d.o.f.=3.27266 \\ P[0]=2.68905e-10\pm (1.7e-12) \\ P[1]=2.07674e-08\pm (1.7e-10) \\ P[2]=1.72004e-08\pm (1.8e-10) \\ P[3]=-6.4798e-07\pm (1.1e-08) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.0474& -0.117& -0.0253\\ -0.0474& 1& 0.956& -0.0865\\ -0.117& 0.956& 1& -0.348\\ -0.0253& -0.0865& -0.348& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}