## 9.10$$a_{\mu}^{SD}(c)$$ cov

The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,\ell)=P[0]+a^2P[2]+a^4P[4] \end{cases}$

$\begin{gather} \chi^2/d.o.f.=0.385193 \\ P[0]=1.16915e-09\pm (3.8e-12) \\ P[1]=-1.60072e-08\pm (1.4e-09) \\ P[2]=-8.9671e-08\pm (1.4e-09) \\ P[3]=-1.91885e-06\pm (1.5e-07) \\ P[4]=2.16271e-06\pm (1.4e-07) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.735& -0.744& 0.713& 0.691\\ -0.735& 1& 0.987& -0.987& -0.952\\ -0.744& 0.987& 1& -0.966& -0.981\\ 0.713& -0.987& -0.966& 1& 0.949\\ 0.691& -0.952& -0.981& 0.949& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}

The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,\ell)=P[0]+a^2P[2] \end{cases}$
$\begin{gather} \chi^2/d.o.f.=2.00251 \\ P[0]=1.11165e-09\pm (2.9e-12) \\ P[1]=7.27116e-09\pm (4.3e-10) \\ P[2]=-6.62148e-08\pm (2.8e-10) \\ P[3]=-4.04437e-06\pm (4.7e-08) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.374& -0.537& 0.186\\ -0.374& 1& 0.853& -0.822\\ -0.537& 0.853& 1& -0.447\\ 0.186& -0.822& -0.447& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}
The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,\ell)=P[0]+a^2P[1]\\ a_{\mu}^{SD}(op,\ell)=P[0]+a^2P[2]+a^4P[3] \end{cases}$
$\begin{gather} \chi^2/d.o.f.=1.67847 \\ P[0]=1.22118e-09\pm (3.3e-12) \\ P[1]=-3.70382e-08\pm (4.7e-10) \\ P[2]=-1.10738e-07\pm (5.8e-10) \\ P[3]=4.09224e-06\pm (4.8e-08) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.621& -0.618& 0.173\\ -0.621& 1& 0.918& -0.293\\ -0.618& 0.918& 1& -0.627\\ 0.173& -0.293& -0.627& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}