9.1 \(a_{\mu}^{SD}(\ell)\)
\(a^2(\mbox{fm})\) | \(a_{\mu}^{SD}(\ell)\) | r |
---|---|---|
0.0063387 | 45.582(21) | 0 |
0.0063387 | 45.584(16) | 0 |
0.0046522 | 46.288(14) | 0 |
0.0032397 | 46.874(17) | 0 |
0.0063387 | 40.347(37) | 1 |
0.0063387 | 40.413(26) | 1 |
0.0046522 | 42.252(31) | 1 |
0.0032397 | 43.955(30) | 1 |
9.1.1 linear
The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,\ell)=P[0]+a^2P[1]\\ a_{\mu}^{SD}(op,\ell)=P[0]+a^2P[2] \end{cases} \]
\[\begin{gather} \chi^2/d.o.f.=15.4204 \\ P[0]=4.80833e-09\pm (2.3e-12) \\ P[1]=-3.90223e-08\pm (4.3e-10) \\ P[2]=-1.22691e-07\pm (4.1e-10) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.955& -0.888\\ -0.955& 1& 0.829\\ -0.888& 0.829& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}
9.1.2 quadratic
The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,\ell)=P[0]+a^2P[2]+a^4P[4] \end{cases} \]
\[\begin{gather} \chi^2/d.o.f.=0.762594 \\ P[0]=4.82364e-09\pm (1.4e-11) \\ P[1]=-4.21295e-08\pm (6.2e-09) \\ P[2]=-1.41317e-07\pm (6.4e-09) \\ P[3]=4.38735e-08\pm (6.3e-07) \\ P[4]=2.76401e-06\pm (6.6e-07) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.995& -0.988& 0.987& 0.969\\ -0.995& 1& 0.992& -0.998& -0.977\\ -0.988& 0.992& 1& -0.989& -0.995\\ 0.987& -0.998& -0.989& 1& 0.977\\ 0.969& -0.977& -0.995& 0.977& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}
9.1.3 quadratic eq
The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,\ell)=P[0]+a^2P[2] \end{cases} \]
\[\begin{gather} \chi^2/d.o.f.=4.12553 \\ P[0]=4.76984e-09\pm (3.9e-12) \\ P[1]=-1.91082e-08\pm (1.5e-09) \\ P[2]=-1.15647e-07\pm (7.1e-10) \\ P[3]=-2.2696e-06\pm (1.5e-07) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.939& -0.962& 0.819\\ -0.939& 1& 0.933& -0.962\\ -0.962& 0.933& 1& -0.842\\ 0.819& -0.962& -0.842& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}
9.1.4 Simpson 3/8
\[\begin{gather} \chi^2/d.o.f.=0.742964 \\ P[0]=4.8462e-09\pm (1.4e-11) \\ P[1]=-5.79924e-08\pm (6.2e-09) \\ P[2]=-1.59258e-07\pm (6.4e-09) \\ P[3]=1.42438e-06\pm (6.3e-07) \\ P[4]=4.18583e-06\pm (6.6e-07) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.996& -0.988& 0.987& 0.968\\ -0.996& 1& 0.992& -0.998& -0.977\\ -0.988& 0.992& 1& -0.989& -0.995\\ 0.987& -0.998& -0.989& 1& 0.977\\ 0.968& -0.977& -0.995& 0.977& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}