14.1 \(a_{\mu}^{W}\) phys
14.1.1 quadratic
The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{W}(eq,\ell)+\frac{10}{9}\Delta_{GS}=P[0]+a^2P[1]- \frac{10}{9}\Delta_{GS}(P[3]a^2)+ P[5](M_{\pi}-M_{\pi}^{phys})\\ a_{\mu}^{W}(op,\ell)+\frac{10}{9}\Delta_{GS}=P[0]+a^2P[2]-\frac{10}{9}\Delta_{GS}(P[4]a^2)+ P[5](M_{\pi}-M_{\pi}^{phys}) \end{cases} \]
\[\begin{gather} \chi^2/d.o.f.=0.00614783 \\ P[0]=2.10501e-08\pm (4e-10) \\ P[1]=-2.71802e-07\pm (1.7e-07) \\ P[2]=-1.87139e-07\pm (1.7e-07) \\ P[3]=-186.451\pm (59) \\ P[4]=123.097\pm (88) \\ P[5]=1.87816e-05\pm (1.7e-05) \\ P[6]=2.44009e-05\pm (1.7e-05) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.99& -0.99& -0.0343& -0.0932& 0.979& 0.977\\ -0.99& 1& 0.99& 0.114& 0.142& -0.982& -0.997\\ -0.99& 0.99& 1& 0.0671& 0.181& -0.997& -0.98\\ -0.0343& 0.114& 0.0671& 1& 0.223& -0.0715& -0.136\\ -0.0932& 0.142& 0.181& 0.223& 1& -0.191& -0.162\\ 0.979& -0.982& -0.997& -0.0715& -0.191& 1& 0.975\\ 0.977& -0.997& -0.98& -0.136& -0.162& 0.975& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}
we plot \(a_\mu^W(eq(op))+\frac{10}{9}\Delta_{GS}+\frac{10}{9}\Delta_{GS} P[3(4)]a^2\)
14.1.2 amu_W_l_phys__w1_a4_eq_op__cov
\(\chi^2_{dof}=\) 0.0855315
\(P[ 0 ]=\) 2.136(41)e-8
\(P[ 1 ]=\) -4.1(1.7)e-7
\(P[ 2 ]=\) -3.0(1.7)e-7
\(P[ 3 ]=\) -190(61)
\(P[ 4 ]=\) 99(66)
\(P[ 5 ]=\) 3.0(1.7)e-5
\(P[ 6 ]=\) 4.0(1.7)e-5
14.1.3 amu_W_l_phys__w1_a4_eq__cov
\(\chi^2_{dof}=\) 1.74817
\(P[ 0 ]=\) 2.0678(78)e-8
\(P[ 1 ]=\) -1.22(24)e-7
\(P[ 2 ]=\) -6(13)e-9
\(P[ 3 ]=\) -181(61)
\(P[ 4 ]=\) 120(66)
\(P[ 5 ]=\) 1.13(26)e-5