9.5 \(a_{\mu}^{SD}(s)\)

\(a^2(\mbox{fm})\) \(a_{\mu}^{SD}(s)\) r
0.0063387 8.5934(31)e-10 0
0.0063387 8.5935(31)e-10 0
0.0046522 8.7442(31)e-10 0
0.0032397 8.8596(29)e-10 0
0.0063387 7.5651(59)e-10 1
0.0063387 7.5616(49)e-10 1
0.0046522 7.9457(57)e-10 1
0.0032397 8.2818(46)e-10 1

9.5.1 linear

The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2] \end{cases} \]

\[\begin{gather} \chi^2/d.o.f.=19.5252 \\ P[0]=9.11123e-10\pm (3.7e-13) \\ P[1]=-8.07338e-09\pm (6.6e-11) \\ P[2]=-2.46762e-08\pm (7.2e-11) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.92& -0.881\\ -0.92& 1& 0.821\\ -0.881& 0.821& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}

9.5.2 quadratic

The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2]+a^4P[4] \end{cases} \]

\[\begin{gather} \chi^2/d.o.f.=0.0965356 \\ P[0]=9.09152e-10\pm (2.2e-12) \\ P[1]=-6.41446e-09\pm (9.8e-10) \\ P[2]=-2.59508e-08\pm (9.7e-10) \\ P[3]=-2.27509e-07\pm (1e-07) \\ P[4]=2.89396e-07\pm (9.9e-08) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.994& -0.989& 0.986& 0.97\\ -0.994& 1& 0.992& -0.998& -0.977\\ -0.989& 0.992& 1& -0.988& -0.994\\ 0.986& -0.998& -0.988& 1& 0.976\\ 0.97& -0.977& -0.994& 0.976& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}

9.5.3 quadratic eq

The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2] \end{cases} \]

\[\begin{gather} \chi^2/d.o.f.=1.15988 \\ P[0]=9.0343e-10\pm (5.9e-13) \\ P[1]=-3.91296e-09\pm (2.3e-10) \\ P[2]=-2.3245e-08\pm (1.2e-10) \\ P[3]=-4.81474e-07\pm (2.4e-08) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.912& -0.957& 0.782\\ -0.912& 1& 0.901& -0.961\\ -0.957& 0.901& 1& -0.788\\ 0.782& -0.961& -0.788& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}

9.5.4 quadratic op

The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2] \end{cases} \]

\[\begin{gather} \chi^2/d.o.f.=0.819494 \\ P[0]=9.14063e-10\pm (3.7e-13) \\ P[1]=-8.61579e-09\pm (6.7e-11) \\ P[2]=-2.81233e-08\pm (1.5e-10) \\ P[3]=5.11329e-07\pm (2.1e-08) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.926& -0.595& 0.214\\ -0.926& 1& 0.598& -0.239\\ -0.595& 0.598& 1& -0.883\\ 0.214& -0.239& -0.883& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}

9.5.5 quadratic simpson

\[\begin{gather} \chi^2/d.o.f.=0.0936549 \\ P[0]=9.12908e-10\pm (2.2e-12) \\ P[1]=-9.24312e-09\pm (9.7e-10) \\ P[2]=-2.91988e-08\pm (9.7e-10) \\ P[3]=1.23024e-08\pm (1e-07) \\ P[4]=5.38373e-07\pm (9.9e-08) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.994& -0.989& 0.986& 0.97\\ -0.994& 1& 0.992& -0.998& -0.977\\ -0.989& 0.992& 1& -0.988& -0.994\\ 0.986& -0.998& -0.988& 1& 0.976\\ 0.97& -0.977& -0.994& 0.976& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}

9.5.6 quadratic eq simpson

\[\begin{gather} \chi^2/d.o.f.=3.683 \\ P[0]=9.02255e-10\pm (6.1e-13) \\ P[1]=-4.59998e-09\pm (2.4e-10) \\ P[2]=-2.41641e-08\pm (1.2e-10) \\ P[3]=-4.58303e-07\pm (2.4e-08) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.917& -0.958& 0.792\\ -0.917& 1& 0.906& -0.962\\ -0.958& 0.906& 1& -0.798\\ 0.792& -0.962& -0.798& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}

9.5.7 quadratic op simpson

\[\begin{gather} \chi^2/d.o.f.=0.0723451 \\ P[0]=9.12641e-10\pm (3.7e-13) \\ P[1]=-9.12395e-09\pm (6.7e-11) \\ P[2]=-2.90812e-08\pm (1.5e-10) \\ P[3]=5.2638e-07\pm (2.2e-08) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.926& -0.584& 0.201\\ -0.926& 1& 0.587& -0.226\\ -0.584& 0.587& 1& -0.883\\ 0.201& -0.226& -0.883& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}