## 9.9$$a_{\mu}^{SD}(c)$$

$$a^2(\mbox{fm})$$ $$a_{\mu}^{SD}(c)$$ r
0.0063387 9.902(29)e-10 0
0.0046522 1.0536(28)e-9 0
0.0032397 1.0968(27)e-9 0
0.0082451 9.064(80)e-10 0
0.0082451 9.069(77)e-10 0
0.0082451 9.052(79)e-10 0
0.0063387 6.873(29)e-10 1
0.0046522 7.999(29)e-10 1
0.0032397 9.003(28)e-10 1
0.0082451 5.72(12)e-10 1
0.0082451 5.73(12)e-10 1
0.0082451 5.71(12)e-10 1

The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,\ell)=P[0]+a^2P[2]+a^4P[4] \end{cases}$

$\begin{gather} \chi^2/d.o.f.=0.0419801 \\ P[0]=1.16181e-09\pm (6.4e-12) \\ P[1]=-1.31386e-08\pm (2.4e-09) \\ P[2]=-8.6361e-08\pm (3e-09) \\ P[3]=-2.17941e-06\pm (2.2e-07) \\ P[4]=1.81058e-06\pm (3.5e-07) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.909& -0.924& 0.897& 0.917\\ -0.909& 1& 0.987& -0.994& -0.971\\ -0.924& 0.987& 1& -0.971& -0.996\\ 0.897& -0.994& -0.971& 1& 0.953\\ 0.917& -0.971& -0.996& 0.953& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}

The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,\ell)=P[0]+a^2P[2] \end{cases}$
$\begin{gather} \chi^2/d.o.f.=1.67124 \\ P[0]=1.12081e-09\pm (3.3e-12) \\ P[1]=2.6323e-09\pm (9.2e-10) \\ P[2]=-6.82327e-08\pm (5.8e-10) \\ P[3]=-3.56163e-06\pm (8.4e-08) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.602& -0.666& 0.574\\ -0.602& 1& 0.98& -0.982\\ -0.666& 0.98& 1& -0.937\\ 0.574& -0.982& -0.937& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}
The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,\ell)=P[0]+a^2P[1]\\ a_{\mu}^{SD}(op,\ell)=P[0]+a^2P[2]+a^4P[3] \end{cases}$
$\begin{gather} \chi^2/d.o.f.=2.88802 \\ P[0]=1.21709e-09\pm (3e-12) \\ P[1]=-3.63321e-08\pm (3.9e-10) \\ P[2]=-1.08265e-07\pm (1e-09) \\ P[3]=3.81371e-06\pm (1.7e-07) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.507& -0.379& 0.21\\ -0.507& 1& 0.492& -0.186\\ -0.379& 0.492& 1& -0.944\\ 0.21& -0.186& -0.944& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}