9.2 \(a_{\mu}^{SD}(\ell)\) cov

9.2.1 linear

9.2.2 quadratic

The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,\ell)=P[0]+a^2P[2]+a^4P[4] \end{cases} \]

\[\begin{gather} \chi^2/d.o.f.=1.29836 \\ P[0]=4.81687e-09\pm (1.5e-11) \\ P[1]=-3.9229e-08\pm (6.5e-09) \\ P[2]=-1.38329e-07\pm (6.5e-09) \\ P[3]=2.4642e-06\pm (6.6e-07) \\ P[4]=-2.48304e-07\pm (6.6e-07) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.996& -0.99& 0.972& 0.989\\ -0.996& 1& 0.993& -0.98& -0.998\\ -0.99& 0.993& 1& -0.995& -0.991\\ 0.972& -0.98& -0.995& 1& 0.981\\ 0.989& -0.998& -0.991& 0.981& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}

9.2.3 quadratic eq

The continuum fit is done with the function \[ \begin{cases} a_{\mu}^{SD}(eq,\ell)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,\ell)=P[0]+a^2P[2] \end{cases} \]

\[\begin{gather} \chi^2/d.o.f.=3.78079 \\ P[0]=4.76574e-09\pm (3.8e-12) \\ P[1]=-1.65222e-08\pm (1.3e-09) \\ P[2]=-1.14963e-07\pm (7e-10) \\ P[3]=-2.59345e-06\pm (1.3e-07) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.932& -0.961& 0.776\\ -0.932& 1& 0.919& -0.946\\ -0.961& 0.919& 1& -0.791\\ 0.776& -0.946& -0.791& 1\\ \end{pmatrix} \\det=0\\ \end{gather}\]}