Chapter 43: vector space

https://www.bilibili.com/video/BV1ez4y1n7h8

43.1 What is a vector?

What is a vector? or What is an element in a vector space?

Binary operations defined on a vector space satisfying some properties is more important than what is a vector.

ultimate answer: double dual concept[43.4.1.2]

43.2 vector space definition

https://tex.stackexchange.com/a/141489 multiline node

vector space construction

Fig. 43.1: vector space construction

{F is a field(f)fieldV(ne)nonempty set+:V×V=V2+Vu,vV,!wV[w=u+v](va)vector addition:F×VVsF,vV,!uV[u=sv=sv](sm)scalar multiplication{!0V,vV[0+v=v](e)identityvV,!vV[(v)+v=0](i)inverseu,v,wV[u+(v+w)=(u+v)+w](a)associativityu,vV[u+v=v+u](c)commutativity(va)axioms{!1F,vV[1v=v](e)identitys,tF,vV[s(tv)=(st)v](a)associativitys,tF,vV[(s+t)v=sv+tv](ds)scalar distributivitysF,u,vV[s(u+v)=su+sv](dv)vector distributivity(sm)axiomsV=V(F,+,)=(V,F,+,) is a vector space over the field FV is a vector space

43.2.1 commutative group structure of vector space

(va) axioms = vector addition axioms

V=(V,+) is a commutative groupV=(V,+) is an abelian group{V=(V,+)=(V,+V) is a group(g)groupu,vV[u+v=v+u](c)commutativity{{+:V×V=V2+Vu,vV,!wV[w=u+v](cl)closure!0V,vV[0+v=v](e)identityvV,!vV[(v)+v=0](i)inverseu,v,wV[u+(v+w)=(u+v)+w](a)associativity(g)u,vV[u+v=v+u](c)

V is a vector spaceV=V(F,+,)=(V,F,+,) is a vector space over the field F{F is a field(f)fieldV(ne)nonempty setV=(V,+) is a commutative groupV=(V,+) is an abelian group(va)vector addition:F×VVsF,vV,!uV[u=sv=sv](sm)scalar multiplication{!1F,vV[1v=v](e)identitys,tF,vV[s(tv)=(st)v](a)associativitys,tF,vV[(s+t)v=sv+tv](ds)scalar distributivitysF,u,vV[s(u+v)=su+sv](dv)vector distributivity(sm)axioms{F is a field(f)fieldV(ne)nonempty set{V=(V,+)=(V,+V) is a group(g)groupu,vV[u+v=v+u](c)commutativity(va)vector addition=F×V:F×VVsF,vV,!uV[u=sv=sv](sm)scalar multiplication{!1F,vV[1v=v](e)identitys,tF,vV[s(tv)=(st)v](a)associativitys,tF,vV[(s+t)v=sv+tv](ds)scalar distributivitysF,u,vV[s(u+v)=su+sv](dv)vector distributivity(sm)axioms{F=F(+F,F)=(F,+F,F)=(F,+,) is a field(f)V(ne){{+:V×V=V2+Vu,vV,!wV[w=u+v](cl)closure!0V,vV[0+v=v](e)identityvV,!vV[(v)+v=0](i)inverseu,v,wV[u+(v+w)=(u+v)+w](a)associativity(g)u,vV[u+v=v+u](c)(va){:F×VVsF,vV,!uV[u=sv=sv](cl)closure!1F,vV[1v=v](e)identitys,tF,vV[s(tv)=sF×V(tF×Vv)=(sFt)F×Vv=(st)v](a)associativitys,tF,vV[(s+t)v=(s+Ft)v=sv+Vtv=sv+tv](ds)scalar distributivitysF,u,vV[s(u+v)=su+sv](dv)vector distributivity(sm)

43.2.2 scalar distributivity

(sm)(ds)

s,tF,vV[(s+t)v=sv+tv]

s,tF,vV[(s+Ft)v=sv+tv]

s,tF,vV[(s+Ft)v=sv+Vtv]

43.3 linearity

{f(x+y)=f(x)+f(y)additivityf(λx)=λf(x)homogeneityf(λx+y)=λf(x)+f(y)f is linear

43.3.1 linear structure of vector space

sF,u,vV[u+svV]

sF,u,vV[u+svV]

sF,u,vV2[u+svV]

{u,vV[u+vV]vector addition closuresF,vV[svV]scalar multiplication closure{u,vV[u+vV](a)additivitysF,vV[svV](h)homogeneitysF,u,vV[u+svV] (l)linearity

43.3.2 linear transformation or linear map

{V,W are vector spacesT:VW{u,vV[T(u+v)=T(u)+T(v)](a)additivityvV,cF[T(cv)=cT(v)](h)homogeneity(L){V,W are vector spacesT:VWu,vV,cF[T(u+cv)=T(u)+cT(v)](l)linearityT is a linear map from V to WT is a linear tranformation

43.4 vector space example

  • arrow vector
  • number
    • integer
    • real
    • complex
    • quaternion
  • function
    • polynomial function
    • continuous function
  • matrix
    • real matrix
    • complex matrix
  • reciprocal space

https://www.bilibili.com/video/BV1NC4y1J7UL

applications in different disciplines

43.4.1 reciprocal space

reciprocal space = 倒易空間

{e1=aa×b0e2=bb×c0e3=cc×a0{e1=b×cΩe2=c×aΩe3=a×bΩ,

Ω=a(b×c)=b(c×a)=c(a×b)

reciprocal space as dual space and contravariant vector

span{e1,e2,e3}=span{a,b,c}=V=R3=span{e1,e2,e3}=span{b×cΩ,c×aΩ,a×bΩ}=span{e1,e2,e3}=span{e}{1,2,3}=V

43.4.1.1 Kronecker delta

(e1e1e1e2e1e3e2e1e2e2e2e3e3e1e3e2e3e3)=[δij]=(100010001)=(e1e1e1e2e1e3e2e1e2e2e2e3e3e1e3e2e3e3)

Kronecker delta

eiej=δij={1i=j0ij

Kronecker delta tensor = Kronecker tensor

ei(ej)=eiej=δij=δij={1i=j0ij

v=vaa+vbb+vcc=v1e1+v2e2+v3e3

e1v=ve1=v1e1e1+v2e2e1+v3e3e1=v1

e2v=ve2=v1e1e2+v2e2e2+v3e3e2=v2

e3v=ve3=v1e1e3+v2e2e3+v3e3e3=v3

v=v1e1+v2e2+v3e3=(ve1)e1+(ve2)e2+(ve3)e3=(e1v)e1+(e2v)e2+(e3v)e3=e1(v)e1+e2(v)e2+e3(v)e3

{e1(v)=e1v=ve1=v1e2(v)=e2v=ve2=v2e3(v)=e3v=ve3=v3

ei(ej)=eiej=δij=δij={1i=j0ij

reciprocal space is a dual space of its original vector space

V=span{e1,e2,e3}={v1e1+v2e2+v3e3}={3j=1vjej}={vjej|{vjFejF3}={v|vV}V=span{e1,e2,e3}={v1e1+v2e2+v3e3}={3i=1viei}={viei|{viFeiF3}={v|vV}

v(v)=(viei)(v),vV=(v1e1+v2e2+v3e3)(v)=v1e1(v)+v2e2(v)+v3e3(v)=v1v1+v2v2+v3v3F

element in dual space is a functional or mapping from its original vector space to the field

v:VF

VvF


V={v|v:VF}

V={e1e2e3v}e1:V={e2}F{100v1}e3V={e1e2e3v}v:F{v1v2v3vivi}


V={v|vV}={v|v:VF}={v|VvF}={ω|ω:VF}={ωiei|{ωiFeiF3}

By defining vector addition and scalar multiplication on the dual space

{+:V×VVω1,ω2V,!(ω1+ω2)V[(ω1+ω2)(v)=ω1(v)+ω2(v)]:F×VVkF,ωV,!(kω)V[(kω)(v)=kω(v)]ωV,!0V[(ω+0)(v)=ω(v)+0(v)=ω(v)]

the dual space also becomes a vector space.

43.4.1.2 double dual concept

double dual space = second dual space

V=(V)={ω|ω:VF}={ω|ωV}

V=(V)=span{eμ}μ{1,2,3}=span{e1,e2,e3}=span{e1,e2,e3}=span{eν}ν{1,2,3}

ω(ω)=(ωνeν)(ω),ωV=(ω1e1+ω2e2+ω3e3)(ω)=ω1e1(ω)+ω2e2(ω)+ω3e3(ω)=ω1ω1+ω2ω2+ω3ω3F


V={ω|ω:VF}

V={e1e2e3ω}e1:V={e2}F{100ω1}e3V={e1e2e3v}ω:F{ω1ω2ω3ωμωμ}


{e1(ω)=e1ω=ωe1=ω(e1)e2(ω)=e2ω=ωe2=ω(e2)e3(ω)=e3ω=ωe3=ω(e3)

ω(ω)=ωω=ωω=ω(ω) i.e. f acts on x equivalent to x acts on f

x(f)=xf=fx=f(x)

eμ(eν)=eμeν=δμν=δμν={1μ=ν0μν

eν(eμ)def.=eνeμ=eμeν=eμ(eν)V=span{eν}ν{1,2,3}span{eν}ν{1,2,3}=VVV{VVV,V are isomorphismindependent of choice of basesV,V are naturally isomorphism


V={ω|ω:VF}V={v|v:VF}

V={e1e2e3ω}e1:V={e2}F{100ω1}e3V={e1e2e3ω}ω:F{ω1ω2ω3ωμωμ}V={e1e2e3v}e1:V={e2}F{100v1}e3V={e1e2e3v}v:F{v1v2v3vμvμ}


VV


VV={ω|ω:VF}

V={v|v:VF}

i.e. vector space is a set of functionals or mappings from its dual space to the field, answering What is a vector?[43.1], and satifying Fig: 43.1.

43.8 subspace