Chapter 47: Feynman method

47.1 Feynman method of differentiation / derivative technique

https://www.bilibili.com/video/BV1hG411Z7Cb

分式微分不是難而是煩

47.1.1 principle

Theorem 25.1 Feynman method of differentiation / derivative

f(t)=k[u(t)]a[v(t)]b[w(t)]cf(t)=f(t)[au(t)u(t)+bv(t)v(t)+cw(t)w(t)+]

Proof:

f(t)=k[u(t)]a[v(t)]b[w(t)]c

f=kuavbwc=kuavbwc

f=kuavbwc=kuavbwclnf=ln(kuavbwc)=lnk+lnua+lnvb+lnwc+=lnk+alnu+blnv+clnw+ddtlnf=ddt(lnk+alnu+blnv+clnw+)ddtff=0+ddt(alnu)+ddt(blnv)+ddt(clnw)+=addtlnu+bddtlnv+cddtlnw+=addtuu+bddtvv+cddtww+ff=auu+bvv+cww+f=f(auu+bvv+cww+)f(t)=f(t)[au(t)u(t)+bv(t)v(t)+cw(t)w(t)+]

47.1.2 examples

f(x)=xx

(xx)=xx+xxlnx

f(x)=xxlnf(x)=xlnxddxlnf(x)=ddx[xlnx]f(x)f(x)=[xlnx]f(x)=f(x)[xlnx]=xx[(x)lnx+x(lnx)]=xx[1lnx+x1x]=xx[lnx+1]=xx[1+lnx]=xx+xxlnx


3D delta function[48.2.2]

Δ(1r)=2(1r2)=(1rr)=(x,y,z)(1x2+y2+z2)

x1x2+y2+z2

x1x2+y2+z2=x[(x2+y2+z2)12]=(x2+y2+z2)12[122xx2+y2+z2]=x(x2+y2+z2)32

(1r)=(1rr)=(x,y,z)(1x2+y2+z2)=(x(x2+y2+z2)32,y(x2+y2+z2)32,z(x2+y2+z2)32)

(1r)=(x(x2+y2+z2)32,y(x2+y2+z2)32,z(x2+y2+z2)32)=xx(x2+y2+z2+ϵ2)32+yy(x2+y2+z2+ϵ2)32+zz(x2+y2+z2+ϵ2)32

xx(x2+y2+z2+ϵ2)32

xx(x2+y2+z2)32=x(x2+y2+z2)32[11x+322xx2+y2+z2]=1(x2+y2+z2)32+3x2(x2+y2+z2)52=(x2+y2+z2)+3x2(x2+y2+z2)52=2x2y2z2(x2+y2+z2)52

(1r)=xx(x2+y2+z2+ϵ2)32+yy(x2+y2+z2+ϵ2)32+zz(x2+y2+z2+ϵ2)32=+2x2y2z2(x2+y2+z2)52+x2+2y2z2(x2+y2+z2)52+x2y2+2z2(x2+y2+z2)52=0

Δ(1r)=(1r)=0


6(1+2t2)(t3t)2t+5t2(4t)32+1+2tt+1+t2

ddt[6(1+2t2)(t3t)2t+5t2(4t)32+1+2tt+1+t2]


ddt[6(1+2t2)(t3t)2t+5t2(4t)32]

ddt[6(1+2t2)(t3t)2t+5t2(4t)32]=6(1+2t2)(t3t)2t+5t2(4t)32[=6[1+2t2](t3t)2t+5t2(4t)32[111+2t24t,[1+2t2]{exponential:1linear to denominator:11+2t2differentiation4t=6(1+2t2)[(t3t)2]t+5t2(4t)32[4t1+2t2+21t3t(3t21),[(t3t)2]{exponential:2linear to denominator:1t3tdifferentiation3t21=6(1+2t2)(t3t)2[t+5t2](4t)32[4t1+2t2+6t22t3t+121t+5t2(1+10t),[t+5t2]{exponential:12linear to denominator:1t+5t2differentiation1+10t=6(1+2t2)(t3t)2t+5t2[(4t)32][4t1+2t2+6t22t3t1+10t2t+10t2+3214t4],[(4t)32]{exponential:32linear to denominator:14tdifferentiation4=6(1+2t2)(t3t)2t+5t2(4t)32[4t1+2t2+6t22t3t1+10t2t+10t232t]


ddt[1+2tt+1+t2]

ddt[1+2tt+1+t2]=1+2tt+[1+t2][1221+2t+(1)1+[122t1+t2]t+1+t2]

47.2 Feynman method of integration / integral technique

47.2.1 principle

https://www.bilibili.com/video/BV1Lj411L79X/?t=2m38s

https://www.youtube.com/watch?v=GW86SShcYbM

I=f(x)dx

I(t)=f(x,t)dx

I=f(x)dxI(t)=f(x,t)dxddtI(t)=I(t)=ddtf(x,t)dxLebniz integral rule=f(x,b(x),t)db(x)dxf(x,a(x),t)da(x)dx+b(x)a(x)tf(x,t)dx=tf(x,t)dx=f(x,t)tdx=ft(x,t)dxI(t)=I(t)dt=I(t)dt+C=[I(t)dt](t) if f(x,t=0)=f(x,0)=f(x)If(x,0)=f(x)=I(0)=[I(t)dt](0)

47.2.2 Dirichlet integral

as a example by Feynman method of integration / integral technique

https://en.wikipedia.org/wiki/Dirichlet_integral

https://www.bilibili.com/video/BV1Lj411L79X/?t=4m38s

0sinxxdx

https://www.youtube.com/watch?v=ZZccxuOpb4k

https://blog.csdn.net/zhuoqingjoking97298/article/details/127950915

sinxxdx

sinxxdx

f(x)=sinxx is an even functionf(x)=sin(x)(x)=sin(x)x=sinxx=f(x)

sinxxdx=0sinxxdx+0sinxxdx=x=0x=sinxxdx+0sinxxdx=x=0x=sinxxdx(,x=xx=x)+0sinxxdx=(x)=0(x)=sin(x)(x)d(x)+0sinxxdx=x=0x=()sinxx(dx)+0sinxxdx=x=0x=sinxx(dx)+0sinxxdx=x=0x=sinxxdx+0sinxxdx=x=x=0sinxxdx+0sinxxdx=0sinxxdx+0sinxxdx=20sinxxdx


sinxxdx=20sinxxdx


0sinxxdx

I=0sinxxdx=0f(x)dx,f(x)=sinxx0etxsinxxdx=0etxf(x)dx, Laplacian transform of f(x)=0f(x,t)dx,{f(x,t)=etxf(x)f(x,0)=e0xf(x)=1f(x)=f(x)I(t)=0f(x,t)dx=0etxf(x)dx=0etxsinxxdxI(0)=IddtI(t)=I(t)=ddt0f(x,t)dx=0f(x,t)tdx=0etxsinxxtdx=0sinxx[etxt]dx=0sinxx[xetx]dx=0sinx[etx]dx=0etxsinxdx, Laplacian transform of sinx=0etx(sinx)dx=x=x=0etxdcosx,I(t)=0etx(sinx)dx=[etxcosx]x=x=0x=x=0cosxdetx=[etcos][et0cos0]x=x=0cosx(tetxdx)=[0cos][11]+0tetxcosxdx=01+0tetxcosxdx=1+x=x=0tetxdsinx=1+[tetxsinx]x=x=0x=x=0sinxd(tetx)=1+[00]0sinx(tetx(t)dx)=10t2etx(sinx)dx=1t20etx(sinx)dx=1t2I(t)I(t)=1t2I(t)I(t)=11+t2I(t)=11+t2dtt=tanθ=11+tan2θdtanθ=1sec2θsec2θdθ=dθ=θ+C=arctant+C=tan1t+C0etxsinxxdx=I(t)=arctant+CI=0sinxxdx=0e0xsinxxdx=I(0)=arctan0+C=0+CC=I0=00sinxxdx=0exsinxxdx=I()=arctan+C=π2+C0=π2+CC=π2I=I(0)=C=π2,I=0sinxxdx0sinxxdx=π2


0sinxxdx=π2


sinxxdx=20sinxxdx=2π2=π


sinxxdx=π

47.2.3 Gaussian integral

https://www.youtube.com/watch?v=jP-6j6mEpRg

ex2dx

ex2dx

f(x)=ex2 is an even functionf(x)=e(x)2=ex2=f(x)

ex2dx=0ex2dx+0ex2dx=x=0x=ex2dx+0ex2dx=x=0x=ex2dx(,x=xx=x)+0ex2dx=(x)=0(x)=e(x)2d(x)+0ex2dx=x=0x=()e(x)2(dx)+0ex2dx=x=0x=e(x)2dx+0ex2dx=x=0x=e(x)2dx+0ex2dx=x=x=0e(x)2dx+0ex2dx=0ex2dx+0ex2dx=20ex2dx


ex2dx=20ex2dx


0ex2dx

I(t)=[t0ex2dx]2

I(t)=dI(t)dt=d[t0ex2dx]2dt=d[t0ex2dx]2d[t0ex2dx]d[t0ex2dx]dt=2[t0ex2dx][ddtt0ex2dx]=2[t0ex2dx][ddtt0ex2dx]FToC=2[t0ex2dx][et2]=2t0ex2et2dx=2t0e(x2+t2)dx=2x=tx=0e(x2+t2)dx,x=xtx=tx=2tx=ttx=0e((tx)2+t2)dtx=2x=1x=0et2((x)2+1)tdx=210tet2(x2+1)dx=10(2t)et2(x2+1)dx=10tet2(x2+1)x2+1dx=ddt10et2(x2+1)x2+1dx[t0ex2dx]2=I(t)=10et2(x2+1)x2+1dx+C0=[00ex2dx]2=I(0)=101x2+1dx+Cx=tanθ=[arctanx]10+C=π4+CC=π4[t0ex2dx]2=I(t)=10et2(x2+1)x2+1dx+C=10et2(x2+1)x2+1dx+π4[0ex2dx]2=lim


\int_{0}^{\infty}\mathrm{e}^{-x^{2}}\mathrm{d}x=\dfrac{\sqrt{\pi}}{2}


\int_{-\infty}^{\infty}\mathrm{e}^{-x^{2}}\mathrm{d}x=2\int_{0}^{\infty}\mathrm{e}^{-x^{2}}\mathrm{d}x=2\cdot\dfrac{\sqrt{\pi}}{2}=\sqrt{\pi}


\int_{-\infty}^{\infty}\mathrm{e}^{-x^{2}}\mathrm{d}x=\sqrt{\pi}

\tag*{$\Box$}

47.2.4 other examples

https://www.youtube.com/watch?v=GW86SShcYbM

\int_{0}^{1}\ln x\mathrm{d}x

I=\int_{0}^{1}\ln x\mathrm{d}x=\int_{0}^{1}\ln\left(x\right)\mathrm{d}x,f\left(x\right)=\ln x

I\left(t\right)=\int_{0}^{1}\ln tx\mathrm{d}x=\int_{0}^{1}f\left(tx\right)\mathrm{d}x=\int_{0}^{1}f\left(x,t\right)\mathrm{d}x,\begin{cases} f\left(x,t\right)=f\left(tx\right)=\ln tx\\ f\left(x,1\right)=f\left(x\right)=\ln x \end{cases}

\begin{aligned} I\left(t\right)= & \int_{0}^{1}f\left(x,t\right)\mathrm{d}x=\int_{0}^{1}f\left(tx\right)\mathrm{d}x=\int_{0}^{1}\ln tx\mathrm{d}x\Rightarrow I\left(1\right)=I\\ \dfrac{\mathrm{d}}{\mathrm{d}t}I\left(t\right)=I^{\prime}\left(t\right)= & \dfrac{\mathrm{d}}{\mathrm{d}t}\int_{0}^{1}f\left(x,t\right)\mathrm{d}x=\int_{0}^{1}\dfrac{\partial f\left(x,t\right)}{\partial t}\mathrm{d}x=\int_{0}^{1}\dfrac{\partial\ln tx}{\partial t}\mathrm{d}x\\ = & \int_{0}^{1}\dfrac{1}{tx}x\mathrm{d}x=\int_{0}^{1}\dfrac{1}{t}\mathrm{d}x=\dfrac{1}{t}\int_{0}^{1}\mathrm{d}x=\dfrac{1}{t}\left[x\right]_{0}^{1}=\dfrac{1}{t}\\ I\left(t\right)= & \int I^{\prime}\left(t\right)\mathrm{d}t=\int\dfrac{1}{t}\mathrm{d}t=\ln\left|t\right|+C\\ \Downarrow & \Rightarrow I=\int_{0}^{1}\ln x\mathrm{d}x=\int_{0}^{1}\ln1x\mathrm{d}x=I\left(1\right)=\ln\left|1\right|+C=0+C\Rightarrow C=I\\ \text{no more known } & \text{boundary condition} \end{aligned}

\begin{aligned} \Im\left(t\right)= & \int_{0}^{1}x^{t}\mathrm{d}x=\left[\dfrac{x^{t+1}}{t+1}\right]_{x=0}^{1}=\dfrac{1}{t+1}\\ \dfrac{-1}{\left(t+1\right)^{2}}=\dfrac{\mathrm{d}}{\mathrm{d}t}\dfrac{1}{t+1}=\dfrac{\mathrm{d}}{\mathrm{d}t}\Im\left(t\right)=\Im^{\prime}\left(t\right)= & \dfrac{\mathrm{d}}{\mathrm{d}t}\int_{0}^{1}x^{t}\mathrm{d}x=\int_{0}^{1}\dfrac{\partial x^{t}}{\partial t}\mathrm{d}x=\int_{0}^{1}x^{t}\ln x\mathrm{d}x\\ -1=\left[\dfrac{-1}{\left(t+1\right)^{2}}\right]_{t=0}=\Im^{\prime}\left(0\right)= & \int_{0}^{1}x^{0}\ln x\mathrm{d}x=\int_{0}^{1}1\ln x\mathrm{d}x=\int_{0}^{1}\ln x\mathrm{d}x\\ \int_{0}^{1}\ln x\mathrm{d}x= & -1 \end{aligned}


https://zhuanlan.zhihu.com/p/687355703

https://www.zhihu.com/question/646881575/answer/3417318090


TaylorCatAlice: Feynman method of integration and residue theorem

https://www.bilibili.com/video/BV1Lj411L79X

MatheManiac: complex integral

https://www.youtube.com/watch?v=EyBDtUtyshk&list=PLDcSwjT2BF_UDdkQ3KQjX5SRQ2DLLwv0R&index=11

https://www.youtube.com/watch?v=EyBDtUtyshk