Chapter 53: Fourier analysis
https://zhuanlan.zhihu.com/p/342952028
https://zhuanlan.zhihu.com/p/19763358
53.1 basic calculation
\[ \int_{\frac{-\tau}{2}+\psi}^{\frac{\tau}{2}+\psi}\cos\left(n\frac{2\pi}{\tau}t+\phi\right){\rm d}t=\left[\frac{\sin\left(n\frac{2\pi}{\tau}t+\phi\right)}{n\frac{2\pi}{\tau}}\right]_{\frac{-\tau}{2}+\psi}^{\frac{\tau}{2}+\psi}=0 \]
\[ \begin{aligned} \cos\alpha\cos\beta= & \frac{\cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)}{2}\\ \sin\alpha\sin\beta= & \frac{-\cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)}{2}\\ \sin\alpha\cos\beta= & \frac{\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)}{2}\\ \cos\alpha\sin\beta= & \frac{\sin\left(\alpha+\beta\right)-\sin\left(\alpha-\beta\right)}{2} \end{aligned} \]
\[ \begin{aligned} & \int\cos\left(m\frac{2\pi}{\tau}t\right)\cos\left(n\frac{2\pi}{\tau}t+\phi_{n}\right){\rm d}t\\ = & \begin{cases} \int\cos\phi_{0}{\rm d}t & m=n=0\\ \int\dfrac{\cos\left(\left(m+n\right)\frac{2\pi}{\tau}t+\phi_{n}\right)+\cos\left(\left(m-n\right)\frac{2\pi}{\tau}t-\phi_{n}\right){\rm d}t}{2} & mn\ne0 \end{cases}\\ = & \begin{cases} t\cos\phi_{0} & m=n=0\\ \begin{cases} \int\dfrac{\cos\left(2n\frac{2\pi}{\tau}t+\phi_{n}\right)+\cos\left(-\phi_{n}\right)}{2}{\rm d}t & m=n\\ \int\dfrac{\cos\left(\left(m+n\right)\frac{2\pi}{\tau}t+\phi_{n}\right)+\cos\left(\left(m-n\right)\frac{2\pi}{\tau}t-\phi_{n}\right)}{2}{\rm d}t & m\ne n \end{cases} & mn\ne0 \end{cases}\\ = & \begin{cases} t\cos\phi_{0} & m=n=0\\ \begin{cases} \int\dfrac{\cos\left(2n\frac{2\pi}{\tau}t+\phi_{n}\right)+\cos\phi_{n}}{2}{\rm d}t & m=n\\ \int\dfrac{\cos\left(\left(m+n\right)\frac{2\pi}{\tau}t+\phi_{n}\right)+\cos\left(\left(m-n\right)\frac{2\pi}{\tau}t-\phi_{n}\right)}{2}{\rm d}t & m\ne n \end{cases} & mn\ne0 \end{cases}\\ = & \begin{cases} t\cos\phi_{0} & m=n=0\\ \begin{cases} \int\dfrac{\cos\left(2n\frac{2\pi}{\tau}t+\phi_{n}\right)}{2}{\rm d}t+\frac{t\cos\phi_{n}}{2} & m=n\\ \int\dfrac{\cos\left(\left(m+n\right)\frac{2\pi}{\tau}t+\phi_{n}\right)+\cos\left(\left(m-n\right)\frac{2\pi}{\tau}t-\phi_{n}\right)}{2}{\rm d}t & m\ne n \end{cases} & mn\ne0 \end{cases} \end{aligned} \]
\[ \begin{aligned} \cos\alpha\cos\beta= & \frac{\cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)}{2}\\ \sin\alpha\sin\beta= & \frac{-\cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)}{2}\\ \sin\alpha\cos\beta= & \frac{\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)}{2}\\ \cos\alpha\sin\beta= & \frac{\sin\left(\alpha+\beta\right)-\sin\left(\alpha-\beta\right)}{2} \end{aligned} \]
\[ \begin{aligned} & \int_{\frac{-\tau}{2}+\psi}^{\frac{\tau}{2}+\psi}\cos\left(m\frac{2\pi}{\tau}t\right)\cos\left(n\frac{2\pi}{\tau}t+\phi_{n}\right){\rm d}t\\ = & \begin{cases} \tau\cos\phi_{0} & m=n=0\\ \begin{cases} \frac{\tau\cos\phi_{n}}{2} & m=n\\ 0 & m\ne n \end{cases} & mn\ne0 \end{cases}\\ = & \begin{cases} \begin{cases} \tau\cos\phi_{0} & n=0\\ \frac{\tau\cos\phi_{n}}{2} & n\ne0 \end{cases} & m=n\\ 0 & m\ne n \end{cases} \end{aligned} \]
\[ \begin{aligned} & \frac{2}{\tau\cos\phi_{n}}\int_{\frac{-\tau}{2}+\psi}^{\frac{\tau}{2}+\psi}\cos\left(m\frac{2\pi}{\tau}t\right)\cos\left(n\frac{2\pi}{\tau}t+\phi_{n}\right){\rm d}t\\ = & \begin{cases} \begin{cases} 2 & n=0\\ 1 & n\ne0 \end{cases} & m=n\\ 0 & m\ne n \end{cases} \end{aligned} \]
\[ \begin{aligned} & \int_{\frac{-\tau}{2}+\psi}^{\frac{\tau}{2}+\psi}\sin\left(m\frac{2\pi}{\tau}t\right)\cos\left(n\frac{2\pi}{\tau}t+\phi_{n}\right){\rm d}t\\ = & \begin{cases} 0 & m=n\\ 0 & m\ne n \end{cases} \end{aligned} \]
\[ \begin{aligned} & \int_{\frac{-\tau}{2}+\psi}^{\frac{\tau}{2}+\psi}\cos\left(m\frac{2\pi}{\tau}t\right)\sin\left(n\frac{2\pi}{\tau}t+\phi_{n}\right){\rm d}t\\ = & \begin{cases} 0 & m=n\\ 0 & m\ne n \end{cases} \end{aligned} \]
\[ \begin{aligned} \frac{2}{\tau\cos\phi_{n}}\int_{\frac{-\tau}{2}+\psi}^{\frac{\tau}{2}+\psi}\cos\left(m\frac{2\pi}{\tau}t\right)\cos\left(n\frac{2\pi}{\tau}t+\phi_{n}\right){\rm d}t= & \begin{cases} \begin{cases} 2 & n=0\\ 1 & n\ne0 \end{cases} & m=n\\ 0 & m\ne n \end{cases}\\ \frac{2}{\tau\cos\phi_{n}}\int_{\frac{-\tau}{2}+\psi}^{\frac{\tau}{2}+\psi}\sin\left(m\frac{2\pi}{\tau}t\right)\sin\left(n\frac{2\pi}{\tau}t+\phi_{n}\right){\rm d}t= & \begin{cases} 1 & m=n\ne0\\ 0 & \neg\left(m=n\ne0\right) \end{cases}\\ \int_{\frac{-\tau}{2}+\psi}^{\frac{\tau}{2}+\psi}\sin\left(m\frac{2\pi}{\tau}t\right)\cos\left(n\frac{2\pi}{\tau}t+\phi_{n}\right){\rm d}t= & \begin{cases} 0 & m=n\\ 0 & m\ne n \end{cases}\\ \int_{\frac{-\tau}{2}+\psi}^{\frac{\tau}{2}+\psi}\cos\left(m\frac{2\pi}{\tau}t\right)\sin\left(n\frac{2\pi}{\tau}t+\phi_{n}\right){\rm d}t= & \begin{cases} 0 & m=n\\ 0 & m\ne n \end{cases} \end{aligned} \]
53.3 quantum mechanics or wave mechanics
Elliot Schneider: Physics with Elliot
https://www.youtube.com/watch?v=W8QZ-yxebFA
53.4 Simon Xu
53.4.1 DFT = discrete Fourier transform
https://www.youtube.com/watch?v=mkGsMWi_j4Q
https://www.youtube.com/watch?v=yYEMxqreA10
53.4.2 FFT = fast Fourier transform
https://www.youtube.com/watch?v=htCj9exbGo0
https://www.youtube.com/playlist?list=PLpXOY-RxVRTNBfxhIuqoZcWtg-JZKCktX
https://www.youtube.com/watch?v=h7apO7q16V0
https://www.youtube.com/watch?v=Ty0JcR6Dvis
53.4.3 wavelet
https://www.youtube.com/watch?v=ZnmvUCtUAEE
https://www.youtube.com/watch?v=jnxqHcObNK4
53.4.3.1 compressed sensing MRI
Michael (Miki) Lustig
https://www.youtube.com/watch?v=AP6JczMW8C8
Tseng, Wen-Yih
https://www.youtube.com/watch?v=P6tzQ9KQ9JQ&list=PLTpF-A8hKVUMRaGE0Zj4WCGJX9BZraFaU&index=14
https://www.youtube.com/watch?v=hxdZdUQ6y2k&list=PLTpF-A8hKVUMRaGE0Zj4WCGJX9BZraFaU&index=16 (Michael Lustig)
53.5 sampling and reconstruction
https://www.youtube.com/playlist?list=PLTp0eSi9MdkPtCLf1VxMWvUSI5JI8kAtz
https://www.youtube.com/watch?v=8CPPyE1rvMU
https://www.youtube.com/watch?v=Qd8fLSDwbQo
https://www.youtube.com/watch?v=0255KLvu75g
53.6 signal and system
https://www.youtube.com/playlist?list=PLX6FA3vfNTfChkbNQGxVPrIsvkC_DwNV6
53.7 image compression / data compression
https://www.youtube.com/playlist?list=PLpXOY-RxVRTOR1PAtQUwoZN2tSs1ICSk7
53.8 Lin, Chi–Kun
https://www.youtube.com/playlist?list=PLj6E8qlqmkFuX5N1O3FKoDfoySC6Hku-2